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NAEAN0010 1 POWER ANALYSIS BACKGROUND

1 Power Analysis Background

It has been known that the power consumed by a digital device varies depend-
ing on the operations performed since at least 1998, when Kocher, Jaffe, and
Jun showed the use of the power analysis for breaking cryptography.1 The first
example given was that of Simple Power Analysis (SPA), where knowing the se-
quence of operations would directly allow read-out of the secret key. Differences
in power consumption for different operations allows breaking of cryptographic
algorithms using SPA.

Fundamentally, this is due to physical effects of how digital devices are built.
A data bus on a digital device is driven high or low to transmit signals between
nodes. The bus line can be modeled as a capacitor, and we can see that changing
the voltage (state) of a digital bus line takes some physical amount of energy,
as it effectively involves changing the charge on a capacitor.

1.1 Power Analysis and AES

Simple Power Analysis, which allows different code flow to be seen via power
consumption, is not typically applicable to AES. A more powerful model - that
the power consumption of a device depends on the data that it’s manipulating
- gives rise to various other attacks that are relevant to AES.

Consider some operation, f , that a digital device is performing. Since the
power consumption that a device is measuring depends on the data that it is
manipulating, the output of f will be visible in the power traces. In the case
of AES, C = f(P,K), where P is a value known to the attacker (typically
the plaintext or ciphertext), and K is a secret key that the attacker is trying
to obtain. Assume we record the power consumption of the device while it is
performing AES N times into N power traces, sampled with an analog to digital
converter at some sampling frequency. Then, if we generate C ′ = f(P,K ′), with
K ′ as all possible values of K, we can compare C ′ to our recorded power traces
and choose the K ′ that leads to the best comparison as our guess for the key.
Here, f will determine the search space of K ′. If C = f(P,K) only depends
on a single byte of K, then each byte of K can be attacked individually, with a
search space of 28. In practice, it is also important that f be non-linear, as this
will eliminate linear relationships between the input and intermediate values.

How C and the power consumption are compared is important. For a Dif-
ferential Power Analysis attack, a single bit of C ′ is used to group power traces.
A difference of means of the two groups is then taken, with the trace with the
largest difference of means being our guess. If K ′ is wrong, or the device isn’t
manipulating the data at a point in the power trace, the traces should be ran-
domly distributed and therefore have a similar mean, giving a low difference.
Instead, if K ′ is correct, one group will have higher power consumption on aver-

1Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Analysis”. In: Pro-
ceedings of the 19th Annual International Cryptology Conference on Advances in Cryptology.
CRYPTO ’99. Berlin, Heidelberg: Springer-Verlag, 1999, pp. 388–397. isbn: 978-3-540-66347-
8. url: http://dl.acm.org/citation.cfm?id=646764.703989.
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NAEAN0010 1 POWER ANALYSIS BACKGROUND

age than the other and there will therefore be a high average difference between
the trace groups at that point.

A more powerful attack, Correlation Power Analysis, works off the assump-
tion that each bit of C contributes roughly the same to the power consumption
of the device. Stated another way, the power contributed by the data is propor-
tional to the Hamming weight of C. The Hamming weight of a binary number
is the number of bits set to 1. Here, the comparison is the linear correlation be-
tween C ′ and the recorded power traces. A wrong K’ will give a low correlation
and a correct K ′ will give a high correlation. Similarly, if f is not occurring at
a particular point in the power trace, the correlation will be low.

It is important to note that these attacks assess each point in time sepa-
rately. As such, it is key that the information leakage for f occur at the same
sample point in each trace. If this is not the case, the traces will need to be
resynchronized. Various resynchronization methods are available in ChipWhis-
perer, such as Sum of Absolute Difference and Dynamic Time Warp; however,
they will not be covered in this document.

Test Vector Leakage Assessment (TVLA), a methodology for evaluating the
side channel leakage of an embedded device, uses Welsh’s T-Test and various
trace groupings to assess if power leakage is present. TVLA will be covered in
a later section.

In addition to the above attacks, more complex attacks such as template
attacks and higher order DPA/CPA exist, with various advantages and disad-
vantages over normal CPA/DPA attacks. These attacks will not be covered in
this white paper.

1.2 Hardware Leakage Models

Choosing an attack point, f , is key for a successful side channel attack. Soft-
ware implementations of AES, for example, load values from memory onto a
high-capacitance data bus, making the side channel information for associated
operations particularly clear. For this reason, as well as the nonlinearity men-
tioned earlier, the SBox or T-Table lookup operations are ideal spots to attack
a software AES implementation.

Hardware AES, on the other hand, varies much more, with the ideal attack
point depending on the design of the AES block. For example, the Hamming
weight of the SBox will still leak information as in the case of Software AES;
however, a successful attack may take many orders of magnitude more traces
to break than the software implementation. Often a better attack point to pick
is registers used to store the AES state. The placement of these registers can
vary between implementations, a key reason why leakage models for hardware
AES vary. Another thing that must be taken into consideration is the previous
state of the bus on which the new data we care about is being loaded to. For
example, if a register previously had the value 0xFF, and the SBox lookup
also results in 0xFF, no power will need to be consumed to change the state
of the register. This can be incorporated into the leakage model by taking
the Hamming distance between the previous value in the register and the new
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value; the Hamming weight of the two values XOR’d. The Hamming distance of
registers is primarily the concern of attacks on hardware AES. Microcontrollers,
on the other hand, typically have their register bits set to a value between 0
and 1 before being updated, as this will save power on average and reduce the
voltage swing when changing a value.

A high level block diagram of an AES implementation that completes 1
round of AES per clock cycle is shown in Figure 1.

Figure 1: Hardware AES Block Diagram

The plaintext mixed with the key will be loaded into the State Register,
then put through the required rounds of AES, finally resulting in the ciphertext
again being put into the State Register. The first transition of the state register

5
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is not ideal - the presence of MixColumns and another AddRoundKey means
the output state will not depend on a single byte of the key, greatly increas-
ing the search space of the attack. Instead, the ideal leakage model to use for
this implementation is the Hamming distance between the final two states - ci-
phertext and InvSubBytes(InvShiftRows(AddRoundKey(ciphertext))). Again,
this is just one possible implementation of AES. If the implementation does not
place the ciphertext in the state register, for example, this attack avenue will
not be available.
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2 ChipWhisperer Background

ChipWhisperer is a set of many tools useful for embedded hardware security
research. In particular, there are the ChipWhisperer-Capture devices (which
perform sampling of power measurements), the ChipWhisperer hardware tar-
gets, the ChipWhisperer target device firmware and target device FPGA blocks,
and ChipWhisperer analysis software and libraries.

Taken as a whole, the ChipWhisperer platform includes tools for all aspects
of side-channel power analysis and fault injection. This ecosystem makes Chip-
Whisperer unique, as it does not rely on external tooling. This also makes it
ideal for environments where setups need to be replicated, as it makes minimal
assumptions about existing tools.

Some of the tools within ChipWhisperer have not been optimized due to
the very wide ranging nature of the ChipWhisperer system – for example Chip-
Whisperer does not currently include any high-performance acceleration of the
analysis algorithms. ChipWhisperer can, however, easily interface to several
other tools to fill those gaps. This whitepaper will highlight two such open-
source tools that specifically emphasize analysis performance, and can easily
perform several of the attacks several hundred times faster than the ChipWhis-
perer analysis tools.

2.1 ChipWhisperer Capture Synchronous Sampling

Commercial oscilloscopes typically provide their own sampling clock which is not
synchronized to the device clock. In the ChipWhisperer-Capture system, the
sample clock is instead derived from the device clock to measure a consistent
point; for example it can be used to measure the power consumption on the
clock edge. A comparison of measurements taken with an unsynchronized and
synchronized sample clock is shown in Fig. 2. This relaxes the sample rate
requirements – that is instead of requiring 1 – 5 GS/s, we can perform attacks
at the same speed as the target device (or some multiple of it). This sample
synchronization is a unique feature of the ChipWhisperer platform.

Note that sample clock synchronization is different from the trigger input
that all oscilloscopes provide. With a real-time oscilloscope, the internal sample
clock of the oscilloscope will be running at all times, and the sample occurs
at the next clock edge after the trigger. Thus even though the oscilloscope is
triggered at a repeatable time, there will be some random jitter between when
the first sample occurs relative to this trigger for unsynchronized (free-running)
sample clocks.

The capture board also adds an adjustable delay (phase shift) between the
input clock and the actual sample point, which can be used to fine-tune the
location of the sample.

7
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Figure 2: Eight power samples with the same input are taken and overlaid to
show consistency of measurements. In A the sample clock is 100 MHz but not
synchronized to the device clock, whereas in B the sample clock is 96 MHz, but
synchronized with the device clock.

2.2 ChipWhisperer Target Boards

The ChipWhisperer ecosystem includes several “target boards”. These boards
contain various types of devices such as Arm Cortex-M microcontrollers, small
FPGAs, PowerPC devices, etc. They can be used during development of secure
algorithms to validate the algorithms on various target boards.

The ChipWhisperer CW308 “UFO Boards” are the most flexible target, as
they include many different target boards that can fit on the CW308 baseboard.
However, these target boards do not include large FPGAs due to the higher
power requirements of these FPGAs. The CW305 board is a stand-alone target
which allows usage of a larger FPGA target to implement cores such as AES,
ECC, etc.

2.3 CW305 Overview

The NewAE NAE-CW305 is a target board containing an Artix A100 or Artix
A35 FPGA, which is instrumented to simplify side-channel power analysis work.
A photo of the board is shown in Figure 3.

A custom USB interface chip means you can trivially send and receive data
to your FPGA design, while also performing FPGA configuration and adjusting
external PLL operating frequencies all from the same interface. ESD protection
on all I/O lines allows you to perform glitch insertion safely, and an optional
BGA socket is perfect for comparing effects across many physical devices.

In order to use this board, you will typically provide:

1. A USB-A Connection used to power the board & provide communications
to your FPGA core.

8
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Figure 3: The NAE-CW305-04-A100-X-0.10

2. A bitstream programmed into the target FPGA, implementing your cryp-
tographic core.

3. A connection at JP1, the 20-pin connector, to a ChipWhisperer capture
platform (such as NAE-CWLITE-CAPTURE or NAE-CW1200) which
provides clock and triggering.

4. A connection at X4, the SMA connector, to a ChipWhisperer capture
platform (such as NAE-CWLITE-CAPTURE or NAE-CW1200) which
provides the power measurement.

We will see more details of this in Section 3.

9



NAEAN0010 3 HARDWARE SETUP

3 Hardware Setup

In this section, we will use the CW305 board and ensure it is correctly setup
for power capture.

3.1 Overview

The objective of our side-channel measurement is ultimately to provide the
framework shown in Figure 4. In this example, the Algorithm Under Test is the
algorithm you want to test. The rest of the circuitry supports the objective of
performing side-channel power analysis on this algorithm.

Figure 4: The CW305 allows you to spend time implementing your Algorithm
Under Test, and let ChipWhisperer provide the supporting framework.

Note that the Register Interface is provided as a sample Verilog RTL from
NewAE Technology Inc – you can of course use your own interface to your
core. Using our Register Interface means you can use the matching open-source
Python code on the Control Computer to perform operations such as loading
input, keys, output, or triggering operations with minimal effort.

At a physical level, the CW305 provides an Address/Data Bus between the
USB interface microcontroller and the FPGA. This address/data bus allows you

10
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to define a typical address/data bus on the FPGA instead, and write arbitrary
data into the FPGA.

As the code running on the USB interface microcontroller (a Microchip
SAM3U) is open-source, you can freely change this interface to anything you
choose. Such work can be performed under a consulting or support contract if
you wish of course too. For most users, however, we highly recommend using
instead a shim layer inside the FPGA, as this will reduce your effort and main-
tenance, and you be able to take advantage of future firmware updates to the
SAM3U microcontroller.

3.2 CW305 Default Setup

The CW305 should come with the following jumper and switches configured
already. If you are interested in the function of all the switches, see the full
documentation on https://rtfm.newae.com.

Figure 5: The CW305 configuration switches.

À S1 (DIP switch, bottom-side, lower-left corner)

The DIP S1 switch configures the FPGA bitstream mode: the M2, M1, M0 match
exactly with mode pins on the Artix-7 FPGA. Normally these are set to 111

which will allow the microcontroller on the CW305 to configure the FPGA
bitstream with your design.

1. M2: Set to 1

2. M1: Set to 1

3. M0: Set to 1

11
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Á S2 (DIP switch, top-side, lower-right corner)

The DIP S2 switch are routed to four FPGA pins. With the default usage, we
use them to configure if the clock comes from the on-board PLL, or from an
external clock (such as the ChipWhisperer). By default, we will configure them
to use the clock from the on-board PLL, as well as route that clock out to the
ChipWhisperer-Capture.

1. J16: Set to 0

2. K16: Set to 1

3. K15: Set to 1

4. L14: Set to 1

Â SW5, “FPGA POWER”, small surface-mount switch

Set this switch to AUTO.

Ã VCC-INT power source selection, through-hole SPDT switch

This switch should be set down, which selects the on-board switch-mode power
supply for the VCC-INT supply.

Ä Input power source selection, through-hole SPDT switch

This switch can be used as a power switch. It selects to power the board via
the USB-A connector, or the DC power jack. Most users can simply use the
USB-A connector as a power source.

3.3 Power On/Off with SMA Connector Removals

It is important to avoid accidentally shorting out the board, as can often happen
due to the conductive (and often grounded) external SMA cable that could touch
portions of the CW305.

+ WARNING: Always power off the CW305 board when connecting or
disconnecting the SMA cable. This can be easily done with power
switch by the USB port. It is very easy to accidentally short the
power using the conductive outside of the SMA cable, which can
permanently damage the CW305.

3.4 CW305 to ChipWhisperer-Pro

12
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+ Follow this section if you are using a ChipWhisperer-Pro.

With the CW305 board set to the defaults above, the additional work is sim-
ply to connect a ChipWhisperer-Pro Capture box, which is part of NAE-CW1200-KIT,
to the CW305 board.

In this case, you simply need to perform the following:

1. Turn off the CW305 board (if already plugged in – see warning above).

2. Connect the 20-pin “Target Connector” from the ChipWhisperer Capture
to JP1 on the CW305.

3. Connect the SMA cable from the “Measure” SMA on the ChipWhisperer
Capture to X5 (amplified shunt output) on the CW305.

4. Connect the ChipWhisperer-Pro to a computer using a USB-A cable. You
may need to also provide DC power to the ChipWhisperer-Pro with some
versions.

5. Turn on the CW305 board (or plug in if not plugged in yet).

An example of this is shown in Figure 6.

Figure 6: The CW305 can be easily interconnected to the ChipWhisperer-Pro
Capture system.

13



NAEAN0010 3 HARDWARE SETUP

3.5 CW305 to ChipWhisperer-Lite

+ Follow this section if you are using a ChipWhisperer-Lite capture
board.

With the CW305 board setup as defaults require, the additional work is sim-
ply to connect a ChipWhisperer-Lite Capture board (part number NAE-CWLITE-CAPTURE,
which is part of NAE-SCAPACK-L1, NAE-SCAPACK-L2, and NAE-CWLITE-2PART)
to the CW305 board.

In this case, you simply need to perform the following:

1. Turn off the CW305 board (if already plugged in – see warning above).

2. Connect the 20-pin “Target Connector” from the ChipWhisperer Capture
to JP1 on the CW305.

3. Connect the SMA cable from the “Measure” SMA on the ChipWhisperer
Capture to X5 (amplified shunt output) on the CW305.

4. Connect the ChipWhisperer-Lite to a computer using a Mini-USB.

5. Turn on the CW305 board (or plug in if not plugged in yet).

An example of this is shown in Figure 7.

Figure 7: The CW305 can be easily interconnected to the ChipWhisperer-Lite
Capture board.

14
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3.6 CW305 to Oscilloscope

The final example is one in which a ChipWhisperer capture platform is not
used. In this case you cannot complete the rest of the power analysis tutorial
by following this white paper, but we include this section as a reference for users
who wish to interface the CW305 with external tools.

In this case, you simply need to perform the following:

1. Turn off the CW305 board (if already plugged in – see warning above).

2. Connect a SMA to BNC cable from the oscilloscope to X5 (amplified shunt
output) on the CW305.

3. Connect an oscilloscope probe to test point TP1, labeled TRIG.

4. Turn on the CW305 board (or plug in if not plugged in yet).

5. Ensure the probe connected to X5 is AC coupled

Figure 8: The CW305 can be easily connected to a regular oscilloscope.

3.7 CW305 LED Indicators

The CW305 target board includes three user LEDs (LED5/LED6/LED7), along
with several LEDs to indicate the status of the FPGA configuration. The

15
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most important of those is LED4, called FPGA DONE. This has the output of
the FPGA DONE pin.

If this led is ON, it means the FPGA is unconfigured. This happens on power-
on, or if you have attempted to load an invalid bistream. The most common
cause of this is using a bitstream built for the Artix A35 instead of the Artix
A100 (or vice versa).

The three user LEDs (LED5/6/7, located to the next of the 20-pin connector,
above the three side-mounted SMAs) are controlled by the FPGA. With the
reference bitfile, they indicate the following:

• LED7 (red): USB clock heartbeat

• LED5 (green): cryptography (target) clock heartbeat

• LED6 (blue): trace capture underway; controlled by Python via the REG USER LED

register.

16
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4 Software Setup

This section will include setup of the toolchain to build the FPGA target, along
with the setup of the toolchain for the power analysis.

4.1 Firmware Setup

Building firmware for the CW305 requires either the Xilinx Vivado toolchain
(CW305-7A35 or CW305-7A100) or the Xilinx ISE toolchain (CW305-7A100
only). We currently only support the Xilinx Vivado toolchain in this tutorial.

Note that we have prebuilt bitstreams checked into the CW305 Examples
of the ChipWhisperer Github. You can use these to perform the first setup to
ensure your CW305 and ChipWhisperer setup has been done correctly before
rebuilding the FPGA image itself.

4.2 Python Library

Communication with both NewAE Capture and Target boards can be done
via the chipwhisperer Python library. The library is available on Github and
can be run natively on Windows 7 and above, Mac OSX, and Linux. The
Python library requires Python 3.6 or later. The library is documented on
ReadTheDocs, including installation instructions.

Devices with firmware versions lower than 0.21 (ChipWhisperer-Lite and
ChipWhisperer-Nano), 0.31 (CW305), or 1.21 (ChipWhisperer-Pro) require man-
ual installation of USB drivers. ChipWhisperer will function with generic Wi-
nUSB or libusb0 drivers, which can be installed using Zadig or via provided
libusb0 drivers in chipwhisperer/hardware/newae_windowsusb_drivers.zip,
respectively.

Devices running on Linux will need to add a rules.d entry and add their
user to an appropriate group to have permission to read and write to NewAE’s
USB devices. More details are available on ReadTheDocs.

Once installed, the Python library can be used to update the ChipWhisperer
firmware:

import chipwhisperer as cw

# Capture FPGA automatically

# programmed on connection if unprogrammed

scope = cw.scope()

# erase USB firmware

prog = cw.SAMFWLoader(scope)

prog.enter_bootloader(True)

# or "cw1200" or "cwnano"

prog.program("/path/name/of/serial/device",

hardware_type="cwlite")
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ChipWhisperer can be run in a regular Python environment. Some addi-
tional features, however, are available if the Python library is used with Jupyter
notebooks. An example of this is an attack result table. Many attack exam-
ples are also available in the form of Jupyter Notebooks from ChipWhisperer
Jupyter.

18
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5 Capturing Power Traces

Capturing those traces!

5.1 Setup

import chipwhisperer as cw

scope = cw.scope()

# scope is optional

target = cw.target(scope, cw.targets.CW305,

"/path/to/bitstream", force=True)

Here the force parameter will cause the FPGA to be reprogrammed, even if
it has already been programmed. If this is not desired, the force parameter can
be omitted.

+ Bitstreams stored in the FPGA are volatile, meaning they will be
lost once the FPGA loses power. Persistent storage is available on
the CW305 in the form of a SPI flash chip. This flash chip can
be programmed via the Python API as well. Programming the SPI
flash requires a shim bitstream that connects appropriate pins on the
on board SAM3U to the SPI flash pins. If the fpga_id parameter
indicating the FPGA present on the CW305 is given when calling
cw.target(), the CW305 will automatically be programmed with
the correct SPI shim bitstream when calling spi_mode(). However,
the bitfile that you wish to write to the SPI flash must still be
explicitly given to spi.program().

import chipwhisperer as cw

target = cw.target(None, cw.targets.CW305,

fpga_id="100t") # or '35t'

spi = target.spi_mode()

spi.erase_chip() # erase full chip

with open("/path/to/bitfile", "rb") as f:

data = list(f.read())

spi.program(data)

You will need to set the switches on the bottom of the CW305 to
SPI mode to force reading the bitstream from the SPI memory chip.
To reprogram the SPI flash itself you will need to change them back
to USB mode. For most users you do not need to use the SPI boot
option, as the USB configuration takes only a few seconds.
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The CW305 FPGA’s VCC-INT pin is powered by an adjustable voltage
regulator. The regulator can be set to output 0.80V to 1.10V. Typically, the
default of 1.00V is sufficient:

target.vccint_set(1.0)

The CW305 contains a 3 output PLL. Its architecture is shown in Figure 9

Figure 9: CW305 PLL Architecture

Here Y1 and Y4 are fixed to PLL1 and PLL2, respectively. Y0 can be
connected to PLL0, PLL1, or PLL2 via the Python API:

# connect PLL0 and Y0

target.pll.pll_enable_set(True) # enable PLL

target.pll.pll_outsource_set("PLL0", 0)

PLL output frequency is configurable from 630kHz to 167MHz:

# set PLL 0 to 10MHz

target.pll.pll_outfreq_set(0, 10E6)

For an application based on the example ChipWhisperer AES core, setting
PLL1 to 10MHz is sufficient. It is important to note that the ChipWhisperer-
Lite and ChipWhisperer-Pro are limited to a sample rate of 105MS/s. For best
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results, do not set PLL1 above 26MHz, as this will allow the ChipWhisperer to
sample at 4x the clock rate of the target.

ChipWhisperer (Lite or Pro) setup can begin with the following:

import chipwhisperer as cw

scope = cw.scope()

scope.gain.db = 25

scope.adc.samples = 129

scope.adc.offset = 0

scope.adc.basic_mode = "rising_edge"

scope.clock.adc_src = "extclk_x4"

scope.io.hs2 = "disabled"

When both the CW305 and the ChipWhisperer capture board are setup,
ensure the ADC is locked:

# ensure ADC is locked:

scope.clock.reset_adc()

assert (scope.clock.adc_locked), "ADC failed to lock"

5.2 Capturing Traces

A ChipWhisperer project can be used to store traces:

proj = cw.project("desired_path.cwp", overwrite=True)

Data can be written and read from the FPGA as follows:

target.fpga_write(<address>, [<data>])

data = target.fpga_read(<address>, <number of bytes>)

Before capture, you should:

1. Get a key text pair object using ChipWhisperer

2. Ensure a valid key is loaded on the target

A basic capture loop typically has the following steps:

1. Arm the ChipWhisperer

2. Write the plaintext to the target

3. Trigger the encryption

4. Capture the trace

5. Read the ciphertext back from the target

6. Organize and store the data
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For example:

import time

N_traces = 5000 # change as required

ktp = cw.ktp.Basic()

key, text = ktp.next()

target.fpga_write(target.REG_CRYPT_KEY, key)

for i in range(N_traces):

#arm the scope

scope.arm()

# write the plaintext

target.fpga_write(target.REG_CRYPT_TEXTIN, text)

key, text = ktp.next()

# Trigger the encryption

target.fpga_write(target.REG_USER_LED, [0x01])

target.usb_trigger_toggle()

# Capture the trace

ret = scope.capture()

if ret:

print("Capure timeout")

continue

# organize and store the data

output = target.fpga_read(target.REG_CRYPT_CIPHEROUT, 16)

wave = cw.get_last_trace()

trace = cw.Trace(wave, text, output, key)

proj.traces.append(trace)

proj.save()

You may notice in the example above that ChipWhisperer allows you to
refer to FPGA registers by name, rather than by address. CW305.py actually
parses the Verilog source code in order to make this possible; it makes it easier
to keep the Verilog and Python in sync, which is very handy during develop-
ment. If fpga_id is specified in the call to cw.target(), then CW305.py will
automatically find the correct Verilog source file for the register definitions. It
is also possible to pass the definition file explicitly to cw.target() , which may
be useful during development:
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target = cw.target(scope, cw.targets.CW305, \

defines_files=["my_def.v"])

Multiple source files may be passed to defines files, which is why they
must be passed as a list.

The example above showed the details of the capture routine, to show what
happens under the hood; the following shorthand can be used to achieve the
same result:

N_traces = 5000 # change as required

ktp = cw.ktp.Basic()

for i in range(N_traces):

key, text = ktp.next()

trace = cw.capture(scope, target, text, key)

if trace is None:

continue

proj.traces.append(trace)

proj.save()
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6 Performing AES CPA Attack

6.1 Opening the Project

If the project has not been closed, either by closing Python, deleting the project
object, or by calling proj.close(), then the project can continue on to be used
for analysis. Otherwise, it must be reopened as follows:

proj = cw.open_project("/path/to/project.cwp")

6.2 Running the Attack

CPA analysis can be setup as follows:

import chipwhisperer.analyzer as cwa

leak_model = cwa.leakage_models.sbox_output

attack = cwa.cpa(project, leak_model)

ChipWhisperer has leakage models available from cwa.leakage_models.
These can be seen by printing that class, or via ChipWhisperer’s API Doc-
umentation. Not all leakage models available are sensible. For example some,
such as cwa.leakage_models.round_1_2_state_diff_text requires the key
to be known. Otherwise, the attack must be perform over 4 key bytes instead of
1. ChipWhisperer does not currently support attacks over multiple key bytes,
or attacks with a known key.

Once the attack is setup, it can be run with:

results = attack.run()

If you’re running in Jupyter, you can run instead with:

results = attack.run(cwa.get_jupyter_callback(attack, 25))

This will display the results of the attack in a nicely formatted table. The
table is updated every time 25 traces are processed by default. By changing
the 25 in the code above, other callback rates can be used. The table after an
attack on AES running in the CW305 is shown in Figure 10.

6.3 Interpreting Results

One of the simplest results from a CPA attack is the guessed key:

results.key_guess()

However, there’s much more you can learn from a CPA attack besides just
whether or not you recovered the key. One important question for an unsuccess-
ful attack is ”how close was the attack to being successful?”. Partial guessing
entropy (PGE) is a useful measure in this case. PGE is how many wrong key
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Figure 10: Jupyter CPA Table

guesses are ahead of the correct key. This isn’t available in a real attack since
you need to know the key to calculate it, but it’s extremely useful in under-
standing whether the attack is partially successful, meaning more traces will
lead to a successful attack, as well as if a brute force attack will be tractable.
The PGE for a particular byte can be found as follows:

# get PGE for byte 0

results.simple_pge(0)

A full dataset sorted by their max correlation can be acquired via the
results.find_maximums() method. This method returns a tuple of
(key_guess, loc_of_max, correlation) for each sorted guess for each byte
in the key. For example, to see the best correlation for the 4th key byte:

print(results.find_maximums()[4][0][2])

Note that loc_of_max is not normally calculated and therefore returns as 0.

6.4 Graphical Results

6.4.1 Output Vs. Time

ChipWhisperer also includes a class to graphically display the results:

plot_data = cwa.analyzer_plots(results)

which has three different data plots available to us. The first is output vs.
time, which displays the calculated correlation at each point in time for the
correct key, as well as the max positive and negative correlations at each point
in time. If you’ve gotten the right key, you should see a large correlation spike
at a point in time. This spike might be the same for each key byte, typical for
hardware AES, or at different times for each key byte, typical for a software
implementation. We’ll use holoviews/bokeh for plotting the data since it deals
well with large datasets like this; however, you can use any Python plotting
library:
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import holoviews as hv

from holoviews.operation.datashader import datashade, shade, dynspread, rasterize

from holoviews.operation import decimate

import pandas as pd, numpy as np

def byte_to_color(idx):

return hv.Palette.colormaps['Category20'](idx/16.0)

a = []

b = []

hv.extension('bokeh')

for key_byte in range(0, 16):

data = plot_data.output_vs_time(i)

a.append(np.array(data[1]))

b.append(np.array(data[2]))

b.append(np.array(data[3]))

pda = pd.DataFrame(a).transpose().rename(str, axis='columns')

pdb = pd.DataFrame(b).transpose().rename(str, axis='columns')

curve = hv.Curve(pdb['0'], "Sample").options(color='black')

for key_byte in range(1, 16):

curve *= hv.Curve(pdb[str(i)]).options(color='black')

for key_byte in range(0, 16):

curve *= hv.Curve(pda[str(i)]).options(color=byte_to_color(i))

decimate(curve.opts(width=900, height=600))

ChipWhisperer versions 5.3.2 and above can simply do the following for the
same effect if using Jupyter:

plot_data.plot_output_vs_traces()

The correct key correlation will be a color depending on the key byte, while
incorrect keys will be in black. If an attack is successful, correlation peaks
should be present for the correct key, indicating where the encryption operation
is happening in time. Depending on the implementation, these correlation peaks
may be at the same point in time (basic software implementation), all at the
same time (typically one round per clock cycle), or somewhere in between.

An Output Vs. Time plot for a the TinyAES128C AES implementation
running on an STM32F3 microcontroller is shown in Figure 11, showcasing that
each key byte has a correlation peak in a different location.

In Figure 12 the Output Vs. Time plot for a 1 round/cycle AES implemen-
tation is shown. As can be seen, all correlation peaks are at the same time.

6.4.2 Windowing

Sometimes, with hardware AES attacks, so-called ”ghost peaks” will occur.
These peaks appear at different time points than the operation we are attacking,
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Figure 11: STM32F3 Output Vs. Time Plot

Figure 12: CW305 Output Vs. Time Plot

with high correlation with an incorrect key guess. As such, it can be important
to window trace data to remove areas with ghost peaks. If you know the key,
this easy using the output vs. time plot. However, for an attack with the correct
knowledge, these false peaks can be easily identified as well. For example, an
attacker might use the output vs. time plot to look for:

• Correlation peaks occurring outside the encryption window. Often this
window can be identified by a clear pattern of 10 rounds (AES128) or 14
rounds (AES256)

27



NAEAN0010 6 PERFORMING AES CPA ATTACK

• In some cases, ghost peaks will become less of an issue as more traces are
collected.

• Locations where correlation is only present for some of the key bytes

6.4.3 PGE vs. Traces

The PGE vs. traces plot can be useful for figuring out how many traces were
required to break an AES implementation. The following code will display the
partial guessing entropy (PGE) for each key byte on the Y-axis, and the number
of traces on the X-axis:

ret = plot_data.pge_vs_trace(0)

curve = hv.Curve((ret[0],ret[1]), "Traces Used in Calculation",

"Partial Guessing Entrop of Byte")

for bnum in range(1, 16):

ret = plot_data.pge_vs_trace(bnum)

curve *= hv.Curve((ret[0],ret[1])).opts(

color=byte_to_color(bnum))

curve.opts(width=900, height=600)

ChipWhisperer versions 5.3.2 and above can simply do the following for the
same effect if using Jupyter:

plot_data.plot_pge_vs_traces()

For example, assume 100k traces are captured on a device. After analyzing
them with ChipWhisperer, you recover the entire key. However, you may also
want to know if this is possible at a lower number of traces, say 10k. Rather
than running the attack again with a lower number of traces, you can inspect
the PGE vs. Traces plot to see when the PGE for all the key bytes reached
zero.

Figure 13 shows that although 50 traces were captured, 30 or fewer were
required (the plot has a resolution of 10 traces) were required to break the
implementation.

6.4.4 Correlation Vs. Traces

As mentioned previously, PGE is a metric only available if you have the key,
not if you’re an attacker. So, for example, while you might technically be
able to break an AES implementation in 10k traces, an attacker won’t know
they’ve broken the key until they try it. Instead, they might use the difference
in correlation between the best guess and the next best one to know when
they’ve recovered a byte of a key. The Correlation Vs. Traces can be useful for
understanding for when an attacker is sure to have broken a key. The following
code will plot the correct key in multiple colours and the next best key in black:
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Figure 13: STM32F3 PGE Vs. Traces

a = []

b = []

for bnum in range(0, 16):

data = plot_data.corr_vs_trace(bnum)

best = [0] * len(data[1][0])

for i in range(256):

if i == key[bnum]:

a.append(np.array(data[1][i]))

else:

if max(best) < max(data[1][i]): best = data[1][i]

b.append(np.array(best))

pda = pd.DataFrame(a).transpose().rename(str, axis='columns')

pdb = pd.DataFrame(b).transpose().rename(str, axis='columns')

curve = hv.Curve(pdb['0'].tolist(), "Iteration Number",

"Max Correlation").options(color='black')

for i in range(1,len(pdb.columns)):

curve *= hv.Curve(pdb[str(i)]).options(color='black')

for i in range(len(pda.columns)):

curve *= hv.Curve(pda[str(i)]).options(color=byte_to_color(i))

curve.opts(width=900, height=600)

ChipWhisperer versions 5.3.2 and above can simply do the following for the
same effect if using Jupyter:

plot_data.plot_corr_vs_traces()
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Figure 13 shows that TinyAES128C was broken by trace 30. Figure 14 shows
that an attacker would clearly know by trace 30 that they had recovered the
AES key.

Figure 14: STM32F3 Correlation Vs. Traces

6.5 Faster Analysis Libraries

ChipWhisperer Analyzer was not built for simplicity and ease of use above
speed. As such, there are a few CPA analysis libraries available that offer large
speed increases over ChipWhisperer. Two, LASCAR and SCARED, will be
shown in this section.

6.5.1 LASCAR

LASCAR, an open source Python library from Ledger, is a fully featured side
channel analysis tool. It has much better performance than ChipWhisperer and
is pure Python, meaning it has good compatibility with different operating sys-
tems. We’ll be focusing on only its CPA attack capabilities, though it is capable
of much more, such as classic DPA attacks and TVLA tests. ChipWhisperer
has some basic compatibility functions and classes to make using data collected
with ChipWhisperer with LASCAR as easy as possible. Instructions for how to
install LASCAR are available on its Github Page.

A LASCAR project/container can be created as follows:

import chipwhisperer.common.api.lascar as cw_lascar

from lascar import *

cw_container = cw_lascar.CWContainer(project, project.textins)
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The second argument for this container should be the known information
from the project. For some leakage models, this is the plaintext, but for others
it is the ciphertext.

An attack class list (one per byte) can be created follows:

leakage_model = cw_lascar.sbox_HW_gen

cpa_engines = [CpaEngine("cpa_%02d" % i,

leakage_model(i, range(256))) for i in range(16)]

Three LASCAR compatable leakage models are available: sbox_HW_gen,
sboxInOut_HD_gen, and lastround_HD_gen, corresponding to ChipWhisperer’s
sbox_output, sbox_in_out_diff, and last_round_state_diff, respectively.
See LASCAR’s CPA example to see how to create a different leakage model.

Once the attack is created, it can be run as follows:

session = Session(cw_container,

engines=cpa_engines).run(batch_size=50)

See LASCAR’s documentation for how to extract useful mesaures from the
attack. ChipWhisperer also includes a class to display results in the same table
as ChipWhisperer’s analysis results:

disp = cw_lascar.LascarDisplay(cpa_engines, list(project.keys[0]))

disp.show_pge()

6.5.2 SCARED

Like LASCAR, scared is a general side channel analysis library (though again
we’ll just be focusing on its CPA capabilities). Unlike LASCAR, it’s got C++
acceleration. This has the advantage of providing a sizable speedup over LAS-
CAR, but has the disadvantage of limiting its compatibility with different oper-
ating systems. At the time of writing, SCARED only supports Linux and OSX.
To install on Windows, you must have the Microsoft C compiler installed to
build the C accelerated functions.

ChipWhisperer doesn’t have any builtin compatibility functions for SCARED,
but using your ChipWhisperer data with SCARED is easy. To put your Chip-
Whisperer traces in a SCARED compatible format:

import estraces, scared, numpy as np

cw_traces = estraces.read_ths_from_ram(np.array(proj.waves),

plaintext=np.array(proj.textins),

ciphertext=np.array(proj.textouts))

The known data name here is actually important, as it will need to match
up to the name of the known variable in the leakage model. For example,
the following leakage model will use the plaintext/proj.textins variable in
cw_traces:
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@scared.attack_selection_function

def sbox_output(plaintext, guesses):

res = np.empty((plaintext.shape[0], len(guesses),

plaintext.shape[1]), dtype='uint8')

for i, guess in enumerate(guesses):

res[:, i, :] = scared.aes.sub_bytes(

np.bitwise_xor(plaintext, guess))

return res

while the following will use the ciphertext/proj.textouts:

@scared.attack_selection_function

def last_round_state_diff(ciphertext, guesses):

res = np.empty((ciphertext.shape[0], len(guesses),

ciphertext.shape[1]), dtype='uint8')

for i, guess in enumerate(guesses):

res[:, i, :] = np.bitwise_xor(scared.aes.sub_bytes(

np.bitwise_xor(ciphertext, guess)),

scared.aes.shift_rows(ciphertext))

return res

Once you have your traces and leakage model, the attack can be run:

container = scared.Container(cw_traces)

a = scared.CPAAttack(selection_function=sbox_output,

model=scared.HammingWeight(),

discriminant=scared.maxabs)

a.run(container)

There are two primary pieces of feedback that SCARED gives about the
attack. The first is a.scores, which gives the maximum correlation for each
guess for each key byte. For example:

# max correlation for key guess 0x2b

# for byte 0

a.scores[0x2b][0]

# best guess for full key

key_guess = np.argmax(a.scores, axis=0)

The second is a.results, which gives the full correlation data for each key
guess, key, and point. For example:

# correlation for guess 0x2b

# for key byte 0

# at point 1317

a.results[0x2b][0][1317]
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7 Performing TVLA Testing

As you’ve seen, full CPA attacks can be very complicated; selecting the wrong
leakage model or misinterpreting the results can give a false sense of security
for a vulnerable AES implementation. We can make investigating side channel
leakage easier by asking a broader question. Instead of trying to fully break
the implementation, we can assess whether or not there is measurable leakage.
One method of detecting the presence of measurable leakage is the Test Vector
Leakage Assessment (TVLA). The basic idea is as follows:

1. Collect a trace dataset with specific requirements. These requirements
vary and will be discussed later

2. Partition the dataset into two groups, G1 and G2, based on specific re-
quirements.

3. Split each group in half: For example, G1 will become G1A and G1B .

4. Use Welsh’s T-Test to test whether or not G1A and G2A have different
means. The T-Test should be computed at each point along the traces.
Repeat with G1B and G2B . If σ ≥ 4.5 or σ ≤ −4.5 for both T-Tests at
the same point, the target is considered to have failed the TVLA.

There are a variety of methods to collect and partition the data. An easy
to apply and powerful one is the Fixed Vs. Random Text dataset. Here the
trace dataset is made up of two sets: The first, fixed dataset, has the following
settings for AES128, using Ifixed for the plaintext and Kdev for the key:

Ifixed = 0xda39a3ee5e6b4b0d3255bfef95601890

Kdev = 0x0123456789abcdef123456789abcdef0

The second, random dataset, has the following settings, using Ij for the
plaintext and Kdev for the key:

Kgen = 0x123456789abcdef123456789abcde0f0

I0 = 0x00000000000000000000000000000000

Ij+1 = AES(Ij, Kgen)

Kdev = 0x0123456789abcdef123456789abcdef0

For best results, intersperse capture of the fixed and random datasets. For
the two half groups, it is sufficient to split them in half chronologically.

The following document from Rambus contains details on AES192 and AES256
Fixed Vs. Random Text TVLA, as well as other TVLA datasets: https://www.
rambus.com/wp-content/uploads/2015/08/TVLA-DTR-with-AES.pdf. Com-
pared to other TVLA tests, Fixed Vs. Random Text is very good at detecting
general side channel leakage. It, however, can pick up undesired data as well.
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For example, the device loading plaintext will often show up very strongly in
the T-Test; however, this leakage isn’t useful to an attacker and is therefore
a false positive. Due to this, can be advantageous to plot the data from the
T-Test. A TVLA test on AES running on the CW305 can be seen in Figure 15,
showcasing that the unprotected core has clearly visible side channel leakage.

Figure 15: CW305 Fixed Vs. Rand Text TVLA
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8 Porting your Own AES Core

While we provide a reference bitfile with an AES implementation for the CW305,
ultimately the purpose of the CW305 platform is to host your own implementa-
tion, be it AES or something else, in order to study its resiliency to side-channel
attacks.

In addition to providing a defined target for our tutorials which show side-
channel attacks on hardware implementations of cryptographic algorithms, our
reference target design provides a worked example of how to interface a hardware
AES core with the ChipWhisperer capture hardware and software.

The reference target is structured in a way to make it easy to modify for
different target cores and requirements. The hierarchical structure of the design,
along with high-level connectivity, is shown in Figure 16.

Figure 16: Verilog hierarchy.

In addition to the top-level cw305 top.v wrapper, there are three Verilog
modules:

• cw305 usb reg fe: Front-end to the SAM3U USB interface; provides a
simple interface to the register block. This module was created in order
to keep all of the logic specific to the SAM3U USB interface out of the
register block. If you are not changing the SAM3U firmware, you should
not need to modify this module.

• clocks: Routing of internal and external clocks, controlled by the J16 and
K16 DIP switches and by a register. If you do not require any changes
to the clocking options provided by the reference design, you should not
need to modify this module.

• cw305 reg aes: Register block. All the control and status registers that
the ChipWhisperer software interacts with in order to control the target
are located here.
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8.1 Clock Domains

The reference CW305 design has two clock domains: the USB clock domain,
for all the control and status registers that ChipWhisperer software interacts
with directly; and the cryptography clock domain, for the target logic. The
main purpose of having these two clock domains is to allow the USB clock to
be disabled when collecting power measurements, which is useful for avoiding
the hassle of filtering out the USB clock noise from captured traces.

The second purpose of the two clock domains is to allow some flexibility for
the cryptography clock’s frequency. The USB clock is fixed at 96 MHz; the
cryptography clock can, in theory, be anything you want it to be. In practice,
constraints on the cryptography clock are imposed by:

• Your capture equipment: the ChipWhisperer-Lite and Pro have a re-
stricted range of supported sampling rates.

• How fast you can implement the target cryptography logic.

• The clock ranges supported by any PLLs you require.

The reference design includes clock-domain-crossing logic so that the Vivado
implementation runs cleanly, without any timing violations.

8.2 Register Block

When porting a new AES core to the CW305, the c305 reg aes register block
is where most (if not all) modifications should be required. It is a simple module
and should be easy to understand and modify. All registers are straightforward,
with the exception of the REG CRYPT GO register. Writing this register launches
the target operation, and reading it indicates whether the operation is done or
not; the logic around this register is a bit more tricky because the USB clock
may be disabled during the target operation, and because the target may also
be launched via a separate control signal.

8.2.1 Register Addressing

Register address definitions are located in cw305 defines.v. When connecting
to the target using CW305.py, this Verilog defines file is automatically parsed so
that registers may be refered to by their Verilog ‘define’d name. For example,
the key register can be referenced as target.REG CRYPT KEY in Python.

The USB interface between the SAM3U and the FPGA has an 8-bit data
bus and a 21-bit address bus. In order to facilitate reading and writing the
long cryptographic inputs and outputs from Python, the address is composed
of a 14-bit register identifier (most significant bits) and a 7-bit byte count offset
(least significant bits); every register can therefore contain up to 128 bytes. The
byte count offset width can be adjusted via the pBYTECNT SIZE parameter in
Verilog, and via the bytecount size property in CW305.py. cw305 reg aes.v

contains several examples of both single- and multi-byte registers.
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8.2.2 Interface Signals

The waveform in Figure 17 shows the timing requirements for the register block’s
interface with the cw305 usb reg fe block:

Figure 17: Register read and write timing.

The waveform in Figure 18 shows the timing requirements for the reg-
ister block’s interface with the target core. There are two options for the
I done signal timing; this is controlled by the pDONE EDGE SENSITIVE instan-
tiation parameter. The reference design uses version 1, which corresponds to
pDONE EDGE SENSITIVE = 1. The USB clock is not shown here, but keep in
mind that it’s possible for the USB clock to be disabled during the target oper-
ation. The USB clock can be re-enabled at any time, either during the target
operation, or after its completion.

Figure 18: Go, done, and busy timing.

The I busy signal should be connected to the 20-pin connector’s IO4 (trig-
ger) line, and serves two purposes: its rising edge sets off the synchronized start
of the power trace capture, and the number of cycles that it’s held high is mea-
sured and available to Python to easily learn exactly how many clock cycles the
target operation ran for.

8.2.3 Making it Go

There are two mechanisms to launch the target operation:

1. Write the REG CRYPT GO register.

2. Set the usb trigger input high.

The second option exists because the disabling of the USB clock is done from
Python; once the USB clock is disabled, it’s impossible to write the REG CRYPT GO

register, so the second mechanism must be used.
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8.3 Testing

A basic Verilog testbench is provided here:
hardware/victims/cw305 artixtarget/fpga/vivado examples/aes128 verilog/sim/

Simply run “make” to execute it. By default, Icarus Verilog (“iverilog”) is
used, but the makefile can easily be adapted to your simulator of choice. The
testbench is by no means exhaustive; it only serves to verify basic operation and
signs of life (also, any syntax errors tend to be picked up much faster with this
than they are by Vivado!). Simulation waveforms may be viewed with gtkwave.

8.4 Other External Interfaces

The reference target uses the USB interface via the SAM3U. There are other
options. If the target incorporates a soft core processor (for example, see our
DesignStartTrace repository), it may make sense to use a UART interface in-
stead; the 20-pin connector’s IO1 and IO2 lines are available to the FPGA for
this purpose. The CW305’s JP3 header has several more FPGA pins broken
out to it to allow even more interface possibilities.

A standard JTAG header can be broken out from these (an adapter board
is available) for connecting of tools such as a J-LINK Segger to the soft-core
processor.

8.5 Other USB Interfaces

The default firmware on the CW305 board assumes the external memory bus
is used to transfer data to registers inside the FPGA implementation. As a
convenience, we also allow you to override these pins to use them as GPIO pins
via the FPGAIO module.

+ Using the FPGAIO module implies you are not using the data bus fea-
ture or register block discussed in Section 8.2, but instead defining
your own interface and high-level Python control module.

These GPIO pins can implement almost any interface from the Python con-
trol computer, including a SPI interface that can be mapped to any of the
interconnect pins. See the FPGAIO class documentation for more details. An
example of the usage is shown here:

fpga = cw.target(None, cw.targets.CW305)

io = target.gpio_mode()

# Example - toggle pin associated with FPGA pin C1 (USB_A11)

import time

io.pin_set_output("C1")

io.pin_set_state("C1", 0)

time.sleep(0.1)

io.pin_set_state("C1", 1)
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# Setup a SPI interface based on schematic net names

io.spi1_setpins(mosi="USB_A20", miso="USB_A19", sck="USB_A18", cs="USB_A17")

io.spi1_enable(True)

somedata = [0x11, 0x22, 0x33]

response = io.spi1_transfer(somedata)

print(response)

8.6 Example of non-AES Core

For an example of a different target core, refer to ECDSA target here:
hardware/victims/cw305 artixtarget/fpga/vivado examples/ecc p256 pmul/.
On the Python side, this target required new functionality, which was done

by extending the CW305.py class with CW305 ECC.py.
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9 Alternative CPA Across MixColumns

While the typical last round state diff leakage model will work for many hard-
ware implementations of hardware AES, it is important to note that this attack
will not work for all implementations. In particular, if the ciphertext is not
stored in the state register, the earliest possible difference in that register will
be between the 9th and 8th rounds, which involves a MixColumns, a linear com-
bination of 4 state bytes. This will change the CPA attack from 256 possible
key bytes on each of the 16 key bytes to 4,294,967,296 possible values of 4 key
words. There is also a nonlinear mix of another round of the AES key, further
complicating the attack. The beginning of the encryption is not much better
since the MixColumns operation is present between rounds 1 and 2 as well.

This might appear to completely thwart our attack, but we can actually do
a modified CPA attack on the beginning of the encryption to completely recover
the key. First detailed in,2 we begin by examining the MixColumns operation:

s′0
s′1
s′2
s′3

 =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2



s0
s1
s2
s3


With s′ being the output of MixColumns and s being the input. Note that

s is also the output of the SubBytes operation (we’re ignoring ShiftRows here
since it just moves bytes around). Again, the problem here is that each byte of
s′ is comprised of 4 bytes of s and therefore 4 bytes of the key. For example,
for s′0:

s′0 = 2s0 + 3s1 + s2 + s3

Next, let’s examine the case where 3 bytes of s are constant and one is
variable: 

s′0
s′1
s′2
s′3

 =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2



v
c1
c2
c3


s′0 then becomes:

s′0 = 2v + 3c1 + c2 + c3 = 2v + ca

Now, instead of s′0 depending on 4 independent bytes, it now only depends
on 2, bringing the search space for the attack down from 232 to 216. This also

2Amir Moradi and Tobias Schneider. “Improved Side-Channel Analysis Attacks on Xilinx
Bitstream Encryption of 5, 6, and 7 Series”. en. In: Constructive Side-Channel Analysis and
Secure Design. Ed. by François-Xavier Standaert and Elisabeth Oswald. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2016, pp. 71–87. isbn: 978-3-
319-43283-0. doi: 10.1007/978-3-319-43283-0_5.
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allows the attack to extend past the next AddRoundKey, since the XOR of the
next round key, a constant, can be incorporated into ca.

While this seems very promising, it suffers from a few major issues:

1. 216 is still a large search space

2. Since ca is mixed linearly with v, the difference in correlation between a
correct and incorrect value for ca is very low

3. This linear mix also results in ghost peaks

A better idea is to attack v one bit at a time. This is very similar to a single
bit DPA attack, except we’re still using correlation instead of the difference.
Since ca is constant, this will result in two scenarios:

1. The targeted bit of ca is 0, causing the correlation to be negative (as in a
normal CPA attack)

2. The targeted bit of ca is 1, causing the correlation to be positive (opposite
to a normal CPA attack)

Taking the absolute value of this correlation then completely removes the
effect of ca, bringing us back to a search space of 28 and removing the hard to
distinguish linear mix of v and ca.

The final hurdle that must be overcome is that a single bit is not enough
information for a CPA attack. This can be solved by repeating the single bit
attack on each bit of s′0, as well as on s′1 = v+cb, s

′
2 = v+cc, and s′3 = 3v+cd; a

total of 32 CPA attacks. These absolute correlations are then summed together
and this sum is used to distinguish the correct key.

The attack can be done at the same time on the other columns, recovering 4
key bytes in total. 3 more acquisition campaigns will then be needed to recover
the final 12 bytes of the key.

9.1 Running the Attack

Since the details of this attack can be fairly complicated, ChipWhisperer in-
cludes a special key text pair and attack object (requires SCARED). A typical
trace acquisition looks like:

from tqdm.autonotebook import trange

ktp = cw.ktp.VarVec('row')

key, pt = ktp.next()

N = 5000

projects = []

for cmpgn in trange(4):

project = cw.create_project(f"Var_Vec_{cmpgn}", \

overwrite=True)
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projects.append(project)

for i in trange(N, leave=False):

ktp.var_vec = cmpgn

key, text = ktp.next()

trace = cw.capture_trace(scope, target, text, key)

if trace is None:

continue

project.traces.append(trace)

project.save()

While the analysis can be done as follows:

from chipwhisperer.analyzer.attacks.attack_mix_columns \

import AttackMixColumns

attack = AttackMixColumns(projects, vec_type='row', hd=False)

results = attack.run(n_traces=None, trace_slice=None)

Two important parameters of the attack are vec_type and hd. For vec_type,
a value of ’column’ will make a single column of the plaintext variable, while a
value of ’row’ will make a single row of the plaintext variable. Both result in
a single byte of each MixColumn being variable; however, attack on some tar-
gets may work better with one instead of the other. For example, the reference
CW305 AES implementation is more vulnerable to a variable ’row’. Ensure
that this variable is matched between the acquisition and the final attack. If
you forget, all key bytes except 4 will be 0xFF.

The second parameter in the attack, hd, switches between using the Ham-
ming distance between the plaintext and output of MixColumns (hd=True) and
just the Hamming weight of the MixColumns (hd=False). Again, some imple-
mentations of AES will work better using the Hamming weight instead of the
Hamming distance, while others, like the CW305 AES implementation, will have
the opposite be true.

The attack can be easily windowed via the trace_slice parameter and you
can use a smaller number of traces via the n_traces parameter.

9.2 Interpreting Results

To print the guessed key and the actual key:

print(bytearray(results["guess"]))

print(bytearray(projects[0].keys[0]))

To plot an output vs. time plot, with the correct byte in red and the best
guess that isn’t correct in green:

%matplotlib notebook

import matplotlib.pyplot as plt

import numpy as np
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plt.figure()

for i in range(0,16):

c = results["corr"][i]

maxes = np.max(c, axis=1)

guess = np.argsort(maxes)[-1]

guess2 = np.argsort(maxes)[-2]

actual = projects[0].keys[0][i]

x = np.argmax(c[actual])

if guess != actual:

plt.plot(c[guess], "g-")

else:

plt.plot(c[guess2], "g-")

plt.plot(c[actual], "r--")

plt.plot(x, c[actual][x], "ro")

print(f"Best guess {hex(guess)} (corr={maxes[guess]}), \

next best = {maxes[guess2]}, real = {maxes[actual]}")

plt.show()

An example output vs. time plot from an analysis windowed between sample
5 and 20 is shown in Figure 19.
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Figure 19: Mix Columns Output Vs. Time
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10 Conclusions and Next Steps

Performing an power analysis attack on a FPGA implementation of AES can
be accomplished with low-cost tools. This whitepaper has demonstrated how
power analysis attacks work in theory, and then applied this to a FPGA imple-
mentation of an AES core.

This work has been done with the ChipWhisperer system, while also high-
lighting several other higher-performance open-source tools you can interface to
ChipWhisperer for larger analysis work.

This setup can be used for a variety of other targets, including implementa-
tion of other hardware cores (ECC, SHA, etc), and implementation of soft-core
processors such as Arm DesignStart or various RISC-V based cores.
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