NAEANO0010: Power Analysis on FPGA
Implementation of AES Using CW305 &
ChipWhisperer®

Alex Dewar, Jean-Pierre Thibault, Colin O’Flynn

Abstract: Side channel power analysis can be used to recover keys from
cryptographic hardware blocks. Thus appnote demonstrates how to perform a
power analysis attack on an AES block implemented on a FPGA, using the
CW305 target board. Power analysis uses a Correlation Power Analysis

(CPA) attack implemented in Python. Discussion of porting AES cores to the
CW805 FPGA is also included

Last Update: Oct 29, 2020

NAEANO0010 CONTENTS

Contents
1 Power Analysis Background 3
1.1 Power Analysisand AES. 3
1.2 Hardware Leakage Models 4
2 ChipWhisperer Background 7
2.1 ChipWhisperer Capture Synchronous Sampling 7
2.2 ChipWhisperer Target Boards 8
2.3 CW305 Overview o v it 8
3 Hardware Setup 10
3.1 Overview e 10
3.2 CW305 Default Setup 11
3.3 Power On/Off with SMA Connector Removals 12
3.4 CW305 to ChipWhisperer-Pro 12
3.5 CW305 to ChipWhisperer-Lite 14
3.6 CW305 to Oscilloscope oot 15
3.7 CW305 LED Indicators 15
4 Software Setup 17
4.1 Firmware Setup 17
4.2 Python Library o 17
5 Capturing Power Traces 19
5.1 Setup 19
5.2 Capturing Traceso e 21
6 Performing AES CPA Attack 24
6.1 Opening the Project 24
6.2 Running the Attack 24
6.3 Interpreting Results 24
6.4 Graphical Results L 25
6.4.1 Output Vs. Time 25
6.4.2 Windowingo 26
6.43 PGEvs. Traces. 28
6.4.4 Correlation Vs. Traces 28
6.5 Faster Analysis Libraries 30
6.5.1 LASCAR 30
6.5.2 SCARED 31
7 Performing TVLA Testing 33

NAEANO0010

CONTENTS

8 Porting your Own AES Core

8.1 Clock Domains
8.2 Register Block
8.2.1 Register Addressing
8.2.2 Interface Signals
8.2.3 MakingitGo
83 Testing
8.4 Other External Interfaces
8.5 Other USB Interfaces
8.6 Example of non-AES Core

9 Alternative CPA Across MixColumns

9.1 Running the Attack
9.2 Interpreting Results

10 Conclusions and Next Steps

NAEANO0010 1 POWER ANALYSIS BACKGROUND

1 Power Analysis Background

It has been known that the power consumed by a digital device varies depend-
ing on the operations performed since at least 1998, when Kocher, Jaffe, and
Jun showed the use of the power analysis for breaking cryptography.® The first
example given was that of Simple Power Analysis (SPA), where knowing the se-
quence of operations would directly allow read-out of the secret key. Differences
in power consumption for different operations allows breaking of cryptographic
algorithms using SPA.

Fundamentally, this is due to physical effects of how digital devices are built.
A data bus on a digital device is driven high or low to transmit signals between
nodes. The bus line can be modeled as a capacitor, and we can see that changing
the voltage (state) of a digital bus line takes some physical amount of energy,
as it effectively involves changing the charge on a capacitor.

1.1 Power Analysis and AES

Simple Power Analysis, which allows different code flow to be seen via power
consumption, is not typically applicable to AES. A more powerful model - that
the power consumption of a device depends on the data that it’s manipulating
- gives rise to various other attacks that are relevant to AES.

Consider some operation, f, that a digital device is performing. Since the
power consumption that a device is measuring depends on the data that it is
manipulating, the output of f will be visible in the power traces. In the case
of AES, C = f(P;K), where P is a value known to the attacker (typically
the plaintext or ciphertext), and K is a secret key that the attacker is trying
to obtain. Assume we record the power consumption of the device while it is
performing AES N times into N power traces, sampled with an analog to digital
converter at some sampling frequency. Then, if we generate C” = f(P; K'), with
K as all possible values of K, we can compare C" to our recorded power traces
and choose the K? that leads to the best comparison as our guess for the key.
Here, T will determine the search space of K'. If C = f(P;K) only depends
on a single byte of K, then each byte of K can be attacked individually, with a
search space of 28. In practice, it is also important that f be non-linear, as this
will eliminate linear relationships between the input and intermediate values.

How C and the power consumption are compared is important. For a Dif-
ferential Power Analysis attack, a single bit of C? is used to group power traces.
A difference of means of the two groups is then taken, with the trace with the
largest difference of means being our guess. If K is wrong, or the device isn’t
manipulating the data at a point in the power trace, the traces should be ran-
domly distributed and therefore have a similar mean, giving a low difference.
Instead, if K? is correct, one group will have higher power consumption on aver-

1Paul C. Kocher, Joshua Ja e, and Benjamin Jun. \Di erential Power Analysis". In: Pro-
ceedings of the 19th Annual International Cryptology Conference on Advances in Cryptology.
CRYPTO ’99. Berlin, Heidelberg: Springer-Verlag, 1999, pp. 388{397. isbn: 978-3-540-66347-
8. url: http://dl.acm.org/citation.cfm?id=646764.703989.

http://dl.acm.org/citation.cfm?id=646764.703989

NAEANO0010 1 POWER ANALYSIS BACKGROUND

age than the other and there will therefore be a high average difference between
the trace groups at that point.

A more powerful attack, Correlation Power Analysis, works off the assump-
tion that each bit of C contributes roughly the same to the power consumption
of the device. Stated another way, the power contributed by the data is propor-
tional to the Hamming weight of C. The Hamming weight of a binary number
is the number of bits set to 1. Here, the comparison is the linear correlation be-
tween C” and the recorded power traces. A wrong K’ will give a low correlation
and a correct K will give a high correlation. Similarly, if f is not occurring at
a particular point in the power trace, the correlation will be low.

It is important to note that these attacks assess each point in time sepa-
rately. As such, it is key that the information leakage for ¥ occur at the same
sample point in each trace. If this is not the case, the traces will need to be
resynchronized. Various resynchronization methods are available in ChipWhis-
perer, such as Sum of Absolute Difference and Dynamic Time Warp; however,
they will not be covered in this document.

Test Vector Leakage Assessment (TVLA), a methodology for evaluating the
side channel leakage of an embedded device, uses Welsh’s T-Test and various
trace groupings to assess if power leakage is present. TVLA will be covered in
a later section.

In addition to the above attacks, more complex attacks such as template
attacks and higher order DPA/CPA exist, with various advantages and disad-
vantages over normal CPA/DPA attacks. These attacks will not be covered in
this white paper.

1.2 Hardware Leakage Models

Choosing an attack point, F, is key for a successful side channel attack. Soft-
ware implementations of AES, for example, load values from memory onto a
high-capacitance data bus, making the side channel information for associated
operations particularly clear. For this reason, as well as the nonlinearity men-
tioned earlier, the SBox or T-Table lookup operations are ideal spots to attack
a software AES implementation.

Hardware AES, on the other hand, varies much more, with the ideal attack
point depending on the design of the AES block. For example, the Hamming
weight of the SBox will still leak information as in the case of Software AES;
however, a successful attack may take many orders of magnitude more traces
to break than the software implementation. Often a better attack point to pick
is registers used to store the AES state. The placement of these registers can
vary between implementations, a key reason why leakage models for hardware
AES vary. Another thing that must be taken into consideration is the previous
state of the bus on which the new data we care about is being loaded to. For
example, if a register previously had the value OXFF, and the SBox lookup
also results in OXFF, no power will need to be consumed to change the state
of the register. This can be incorporated into the leakage model by taking
the Hamming distance between the previous value in the register and the new

NAEANO0010 1 POWER ANALYSIS BACKGROUND

value; the Hamming weight of the two values XOR’d. The Hamming distance of
registers is primarily the concern of attacks on hardware AES. Microcontrollers,
on the other hand, typically have their register bits set to a value between 0
and 1 before being updated, as this will save power on average and reduce the
voltage swing when changing a value.

A high level block diagram of an AES implementation that completes 1
round of AES per clock cycle is shown in Figure 1.

.

SubBytes

ShitRows

h

MixColumns

Plaintext ﬁ
L 4

h

AddRoundKey

h J

State Register

Figure 1: Hardware AES Block Diagram

The plaintext mixed with the key will be loaded into the State Register,
then put through the required rounds of AES, finally resulting in the ciphertext
again being put into the State Register. The first transition of the state register

NAEANO0010 1 POWER ANALYSIS BACKGROUND

is not ideal - the presence of MixColumns and another AddRoundKey means
the output state will not depend on a single byte of the key, greatly increas-
ing the search space of the attack. Instead, the ideal leakage model to use for
this implementation is the Hamming distance between the final two states - ci-
phertext and InvSubBytes(InvShiftRows(AddRoundKey(ciphertext))). Again,
this is just one possible implementation of AES. If the implementation does not
place the ciphertext in the state register, for example, this attack avenue will
not be available.

NAEANO0010 2 CHIPWHISPERER BACKGROUND

2 ChipWhisperer Background

ChipWhisperer is a set of many tools useful for embedded hardware security
research. In particular, there are the ChipWhisperer-Capture devices (which
perform sampling of power measurements), the ChipWhisperer hardware tar-
gets, the ChipWhisperer target device firmware and target device FPGA blocks,
and ChipWhisperer analysis software and libraries.

Taken as a whole, the ChipWhisperer platform includes tools for all aspects
of side-channel power analysis and fault injection. This ecosystem makes Chip-
Whisperer unique, as it does not rely on external tooling. This also makes it
ideal for environments where setups need to be replicated, as it makes minimal
assumptions about existing tools.

Some of the tools within ChipWhisperer have not been optimized due to
the very wide ranging nature of the ChipWhisperer system — for example Chip-
Whisperer does not currently include any high-performance acceleration of the
analysis algorithms. ChipWhisperer can, however, easily interface to several
other tools to fill those gaps. This whitepaper will highlight two such open-
source tools that specifically emphasize analysis performance, and can easily
perform several of the attacks several hundred times faster than the ChipWhis-
perer analysis tools.

2.1 ChipWhisperer Capture Synchronous Sampling

Commercial oscilloscopes typically provide their own sampling clock which is not
synchronized to the device clock. In the ChipWhisperer-Capture system, the
sample clock is instead derived from the device clock to measure a consistent
point; for example it can be used to measure the power consumption on the
clock edge. A comparison of measurements taken with an unsynchronized and
synchronized sample clock is shown in Fig. 2. This relaxes the sample rate
requirements — that is instead of requiring 1 — 5 GS/s, we can perform attacks
at the same speed as the target device (or some multiple of it). This sample
synchronization is a unique feature of the ChipWhisperer platform.

Note that sample clock synchronization is different from the trigger input
that all oscilloscopes provide. With a real-time oscilloscope, the internal sample
clock of the oscilloscope will be running at all times, and the sample occurs
at the next clock edge after the trigger. Thus even though the oscilloscope is
triggered at a repeatable time, there will be some random jitter between when
the first sample occurs relative to this trigger for unsynchronized (free-running)
sample clocks.

The capture board also adds an adjustable delay (phase shift) between the
input clock and the actual sample point, which can be used to fine-tune the
location of the sample.

NAEANO0010 2 CHIPWHISPERER BACKGROUND

-0.2

-0.4

10 20 30 20 50 50

Figure 2: Eight power samples with the same input are taken and overlaid to
show consistency of measurements. In A the sample clock is 100 MHz but not
synchronized to the device clock, whereas in B the sample clock is 96 MHz, but
synchronized with the device clock.

2.2 ChipWhisperer Target Boards

The ChipWhisperer ecosystem includes several “target boards”. These boards
contain various types of devices such as Arm Cortex-M microcontrollers, small
FPGAs, PowerPC devices, etc. They can be used during development of secure
algorithms to validate the algorithms on various target boards.

The ChipWhisperer CW308 “UFO Boards” are the most flexible target, as
they include many different target boards that can fit on the CW308 baseboard.
However, these target boards do mot include large FPGAs due to the higher
power requirements of these FPGAs. The CW305 board is a stand-alone target
which allows usage of a larger FPGA target to implement cores such as AES,
ECC, etc.

2.3 CW305 Overview

The NewAE NAE-CW305 is a target board containing an Artix A100 or Artix
A35 FPGA, which is instrumented to simplify side-channel power analysis work.
A photo of the board is shown in Figure 3.

A custom USB interface chip means you can trivially send and receive data
to your FPGA design, while also performing FPGA configuration and adjusting
external PLL operating frequencies all from the same interface. ESD protection
on all I/O lines allows you to perform glitch insertion safely, and an optional
BGA socket is perfect for comparing effects across many physical devices.

In order to use this board, you will typically provide:

1. A USB-A Connection used to power the board & provide communications
to your FPGA core.

NAEANOO10 2 CHIPWHISPERER BACKGROUND

Figure 3: The NAE-CW305-04-A100-X-0.10

2. A bitstream programmed into the target FPGA, implementing your cryp-
tographic core.

3. A connection at JP1, the 20-pin connector, to a ChipWhisperer capture
platform (such as NAE-CWLITE-CAPTURE or NAE-CW1200) which
provides clock and triggering.

4. A connection at X4, the SMA connector, to a ChipWhisperer capture
platform (such as NAE-CWLITE-CAPTURE or NAE-CW1200) which
provides the power measurement.

We will see more details of this in Section 3.

NAEANOO10 3 HARDWARE SETUP

3 Hardware Setup

In this section, we will use the CW305 board and ensure it is correctly setup
for power capture.

3.1 Overview

The objective of our side-channel measurement is ultimately to provide the
framework shown in Figure 4. In this example, theAlgorithm Under Test is the
algorithm you want to test. The rest of the circuitry supports the objective of
performing side-channel power analysis on this algorithm.

Figure 4: The CW305 allows you to spend time implementing yourAlgorithm
Under Test, and let ChipWhisperer provide the supporting framework.

Note that the Register Interface is provided as a sample Verilog RTL from
NewAE Technology Inc { you can of course use your own interface to your
core. Using ourRegister Interface means you can use the matching open-source
Python code on the Control Computer to perform operations such as loading
input, keys, output, or triggering operations with minimal e ort.

At a physical level, the CW305 provides anAddress/Data Bus between the
USB interface microcontroller and the FPGA. This address/data bus allows you

10

NAEANOO10 3 HARDWARE SETUP

to de ne a typical address/data bus on the FPGA instead, and write arbitrary
data into the FPGA.

As the code running on the USB interface microcontroller (a Microchip
SAM3U) is open-source, you can freely change this interface to anything you
choose. Such work can be performed under a consulting or support contract if
you wish of course too. For most users, however, we highly recommend using
instead a shim layer inside the FPGA, as this will reduce your e ort and main-
tenance, and you be able to take advantage of future rmware updates to the
SAM3U microcontroller.

3.2 CW305 Default Setup

The CW305 should come with the following jumper and switches con gured
already. If you are interested in the function of all the switches, see the full
documentation on https://rtfm.newae.com

Figure 5: The CW305 con guration switches.

A S1 (DIP switch, bottom-side, lower-left corner)

The DIP S1switch con gures the FPGA bitstream mode: the M2 M1 MOmatch
exactly with mode pins on the Artix-7 FPGA. Normally these are set to 111
which will allow the microcontroller on the CW305 to con gure the FPGA
bitstream with your design.

1. M2: Setto1
2. M1: Setto1l
3. MO: Setto1l

11

NAEANOO10 3 HARDWARE SETUP

A S2 (DIP switch, top-side, lower-right corner)

The DIP S2 switch are routed to four FPGA pins. With the default usage, we
use them to con gure if the clock comes from the on-board PLL, or from an
external clock (such as the ChipWhisperer). By default, we will con gure them
to use the clock from the on-board PLL, as well as route that clockout to the
ChipWhisperer-Capture.

1. J16: Set to0
2. K16: Setto 1
3. K15: Setto1l
4. L14: Settol

A SW5, \FPGA POWER", small surface-mount switch
Set this switch to AUTO

A VCC-INT power source selection, through-hole SPDT switch

This switch should be set down, which selects the on-board switch-mode power
supply for the VCC-INT supply.

A Input power source selection, through-hole SPDT switch

This switch can be used as a power switch. It selects to power the board via
the USB-A connector, or the DC power jack. Most users can simply use the
USB-A connector as a power source.

3.3 Power On/O with SMA Connector Removals

It is important to avoid accidentally shorting out the board, as can often happen
due to the conductive (and often grounded) external SMA cable that could touch
portions of the CW305.

+ WARNINGAlways power o the CW305 board when connecting or
disconnecting the SMA cable. This can be easily done with power
switch by the USB port. It is very easyto accidentally short the
power using the conductive outside of the SMA cable, which can
permanently damagethe CW305.

3.4 CWB305 to ChipWhisperer-Pro

12

	Power Analysis Background
	Power Analysis and AES
	Hardware Leakage Models

	ChipWhisperer Background
	ChipWhisperer Capture Synchronous Sampling
	ChipWhisperer Target Boards
	CW305 Overview

	Hardware Setup
	Overview
	CW305 Default Setup
	Power On/Off with SMA Connector Removals
	CW305 to ChipWhisperer-Pro
	CW305 to ChipWhisperer-Lite
	CW305 to Oscilloscope
	CW305 LED Indicators

	Software Setup
	Firmware Setup
	Python Library

	Capturing Power Traces
	Setup
	Capturing Traces

	Performing AES CPA Attack
	Opening the Project
	Running the Attack
	Interpreting Results
	Graphical Results
	Output Vs. Time
	Windowing
	PGE vs. Traces
	Correlation Vs. Traces

	Faster Analysis Libraries
	LASCAR
	SCARED

	Performing TVLA Testing
	Porting your Own AES Core
	Clock Domains
	Register Block
	Register Addressing
	Interface Signals
	Making it Go

	Testing
	Other External Interfaces
	Other USB Interfaces
	Example of non-AES Core

	Alternative CPA Across MixColumns
	Running the Attack
	Interpreting Results

	Conclusions and Next Steps

