
1

Last Update: March 18/2025

ChipWhisperer
Husky & HuskyPlus

Care & Feeding

Instructions

2

[EN] WARNINGS:

• Any external power supply used with the product shall comply with relevant
regulations and standards applicable in the country of intended use. The power
supply should provide a voltage of 5VDC and minimum rated current of 500mA.

• Do not expose this product to water or moisture.
• Do not allow conductive materials such as wires or aluminum foil to come into

contact with the product.
• Take care when handling the product to avoid mechanical or electrical damage.
• Avoid electrostatic discharge damage by handling the device only in an

electrostatic discharge protective area.

WEEE Directive Statement for European Union

This marking indicates the product should not be disposed with other household
wastes throughout the EU. To prevent possible harm to the environment or human
health, recycle it responsibly to promote the sustainable reuse of material resources.
Please contact us at compliance@newae.com and we will provide a return service, or
will otherwise ensure you can safely dispose of this product at no cost to yourself.

[DE] WARNUNG:

• Das zur Stromversorgung verwendete externe Netzteil muss den Vorschriften
und Normen des Landes entsprechen, in dem es verwendet wird. Es muss 5 V
(Gleichstrom) und einen Mindest-Nennstrom von 500mA liefern.

• Das Produkt darf nicht in Kontakt mit Wasser gelangen oder Feuchtigkeit
ausgesetzt werden.

• Achten Sie auf einen sorgsamen im Umgang mit dem Produkt, so dass keine
mechanischen und elektrischen Schäden am Produkt entstehen können.

• Achten Sie darauf, dass keine leitenden Materialien mit dem Produkt in
Berührung kommen.

• Arbeiten Sie zur Vermeidung von Schäden durch elektrostatische Entladung
(ESD) ausschließlich in ESD-geschützten Bereichen bzw. an dafür vorgesehenen
ESD-Arbeitsplätzen.

Entsorgung:

Das Produkt soll einer umweltgerechten Wiederverwertung zugeführt werden.
Entsorgen Sie es nicht im Restmüll/Hausmüll!

Bei Fragen zur Entsorgung setzen Sie sich bitte per E-Mail mit uns in Verbindung
(compliance@newae.com), damit wir sicherstellen können, dass eine sichere und
umweltgerechte Entsorgung des Produktes ohne zusätzliche Kosten möglich ist.

Nur für EU-Länder:

Gemäß der Europäischen Richtlinie 2012/19/EU über Elektro- und Elektronik-
Altgeräte und ihrer Umsetzung in nationales Recht müssen nicht mehr
gebrauchsfähige Elektro- und Elektronik-Produkte getrennt gesammelt und einer
umweltgerechten Wiederverwertung zugeführt werden.

Bei unsachgemäßer Entsorgung können Elektro- und Elektronik-Altgeräte aufgrund
des möglichen Vorhandenseins gefährlicher Stoffe schädliche Auswirkungen auf die
Umwelt und die menschliche Gesundheit haben.

NewAE Technology Inc. 127 Joseph Zatzman Drive. Dartmouth, NS. Canada

Introducing the

3

The ChipWhisperer started as an open-source project capable
of performing advanced power analysis and fault injection. It’s
grown to include a wide range of both hardware and software.
We make our tools accessible by ensuring we can commercially
support it, making it well documented, avoiding artificial
limitations, and keeping it as open as we reasonably can.
While the production design files for ChipWhisperer-Husky
aren’t open source, the interesting parts you might want to
modify, such as the FPGA codebase, microcontroller firmware,
and target board design files are open-source.

The CW Husky and HuskyPlus have the same software
interface but the HuskyPlus has the following advantages:
• Faster ADC (250MS/s vs 200MS/s)
• Larger ADC sample buffer (327828 samples vs 131124 samples)
• Larger logic analyzer sample buffer (65552 samples vs 16376 samples)
• Larger TraceWhisperer sample buffer (32776 samples vs 8188 samples)
• Longer trigger sequences (up to 4 sequenced triggers vs 2)

We hope you enjoy using this tool, and thank you for sharing
our vision of a future where hardware security tooling is
available to students and engineers everywhere!

CW Husky Family

Colin O’Flynn, Hilary Taylor, Alex Dewar, Jean-Pierre Thibault,
Claire Frias, Liam Craig, Erica Penton

Luna, Bergen, and Hector

Special thanks to the QA team:

Thanks from everyone at NewAE:

4

Table of Contents

Table of Contents………………………………………………………….... 4
Kit Contents…………………………………………………………............. 5
Power Analysis & Differential Power Analysis……………………. 6
Power Analysis with the Husky………………………………………… 8
Synchronous Sampling & Clock Quick Reference……………….. 10
Glitching………………………………………………………………………… 12
Clock & Voltage Glitching with the Husky………………………….. 14
Installing ChipWhisperer………………………………………………… 16
Getting Started……………………………………………………………….. 18
ChipWhisperer-Husky Hardware…………………………………….. 20
CW313 & Target Hardware………………………………………......... 21
Connectivity – Analog……………………………………………………. 22
Connectivity – Digital…………………………………………………….. 23
Triggering…………………………………………………………………….. 24
Target Firmware & Hardware Abstraction Layer (HAL)…….. 26
Adding a New Target……………………………………………………… 28
Connecting to an Existing Board……………………………………… 30
Advanced Uses: Modifying the FPGA………………………………. 32
Advanced Uses: Modifying the SAM3U………………………….... 33
Updating SAM3U Firmware……………………………………………. 34
Common Problems………………………………………………………… 35
Getting Help & More……………………………………………………... 36

About This “Manual”
Most of the project documentation is available online, which will
always be the most up-to-date. This manual is partly a quick
reference and partly an introduction to what you can do with the
ChipWhisperer-Husky Family. You may need additional resources,
which we’ve linked to if you haven’t worked with power analysis or
fault injection before.

MANUAL COPYRIGHT & DISCLAIMER
© 2025 NewAE Technology Inc. All rights reserved. Specifications are subject to change without notice.
All product names are trademarks of their respective companies. ChipWhisperer is a registered
trademark of NewAE Technology Inc.

NewAE Technology Inc. makes no representations or warranties with respect to the accuracy or
completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. NewAE Technology does not make any
commitment to update the information contained herein. NewAE Technology products are not
intended, authorized, or warranted for use as components in applications intended to support or
sustain life. NewAE Technology products are designed solely for teaching purposes.

5

Kit Contents

ChipWhisperer Husky
 CW313 Board
SAM4S Target (Inserted)
iCE40 Target
SMA Cables (×2)
 ChipWhisperer 20-Pin Connector breakout wires

MCX to SMA & MCX to BNC
20-Pin Cables (×2)
USB-C Cable (with USB-A adapter)
Jumper Wires & Caps
CW308 Target to CW312 adapter

   













⓫

⑪

The HuskyPlus Kit contains all the same items with the following
two exceptions:
(1) The Husky main unit is replaced with the HuskyPlus
(5) The SMA cables are replaced with higher quality versions

Some parts (especially jumpers & cables) may look slightly different.
Some adapters are pre-installed, for example the USB-C to A
adapter can be pulled off the USB-C cable if you don’t need a USB-A
end.

Power Analysis Side Channels

Power analysis is a method of finding secrets using a power side-
channel. It turns out that digital devices consume different
amounts of power depending on what they are doing. As a simple
example, take a look at this comparison loop:

bool is_password_ok(char input *)
{
 char known_pw[] = "doggy";
 for(int j = 0; j < 5; j++){
 if (input[j] != known_pw[j])
 return false;
 }
 return true;

}

This simple function has a known password stored at (doggy),

which as soon as a character is wrong with the input, it returns
false at . If it never sees a wrong character, it returns true at .

Different operations actually take different amounts of power;
even a small microcontroller shows obvious differences if we look
closely. Take a look at a recording made of the power used by the
is_password_ok()function, with three different inputs:







Whoa – notice how at  the red trace “diverges”? And then the
blue trace diverges at ? The red trace is the guess daddy, the
blue trace is dog, and green is doggs. As more correct characters

are in the guess, we can see the loop progress further. This lets
us brute force the password one character at a time.

You’ll do this yourself in SCA101, Lab 2.1B

6

 

Differential Power Analysis
You’ll often hear of differential power analysis, which refers to
the fact we use different data with the same operation. This is
even crazier than before – not only do devices tell you what
operations they are doing, but you can also determine the exact
data being processed! It works because internally moving data
around means charging and discharging data lines – this is
normally done with something like this:

Charging and discharging the lines takes physical power. Taking
a simple operation, such as loading a single byte with different
values, and plotting what the power consumption looks like will
give us something like this:

It might be hard to see, but there are nine distinct “splits” the
power trace takes. These nine distinct splits correspond to how
many 1-bits are in the byte (you can have zero 1-bits, one 1-bit,
etc., up to eight 1-bits, so you end up with nine groups). We can
thus learn the number of 1’s in a byte being processed.

You’ll see this split in SCA101, Lab 3.1

You’ll use this data to break AES SCA101, Lab 3.3

7

VDD

GND
Parasitic
capacitance

Long data bus line

Repeated ×8, ×16,
or ×32 depending
on data width.

Input

Power Analysis with the Husky

Capturing these detailed power traces is what the
ChipWhisperer-Husky is designed for! A typical setup will look
like this on your desk:

The ChipWhisperer-Husky performs the analog measurement
(like an oscilloscope), where the target device is running your
code with a secret inside it. For all the labs, the
ChipWhisperer-Husky also serves as a communication
and programming interface.

The Target board will normally consist of the CW313
“baseboard” along with a target plugged into it. To make power
measurements easier, the target boards are specially designed
to provide you with clean power traces. Take a look at part of
the SAM4S schematic:

A shunt resistor (R1) will develop a voltage depending on the
current flowing through it. This is measured at SHUNTL,
which connects to the ChipWhisperer-Husky through the SMA
cable.

8

Power Analysis with the Husky

We need to measure the difference
across the shunt resistor. To
simplify the setup, the input of the
ChipWhisperer-Husky is AC
coupled, which means it sees only
the variations in the SHUNTL
value. This works because the
power on the “other side”
(SHUNTH) is very clean, thanks to
a filter in the CW313 baseboard.

The ChipWhisperer-Husky front-end contains a powerful Low
Noise Amplifier (LNA), with up to 70 dB of gain (3000×).
Unlike an oscilloscope, the ChipWhisperer can only measure
very small signals. This makes it ideal for power analysis work.
The front-end looks like this:

The analog to digital converter (ADC) has a fixed input range,
so the adjustable gain of the LNA lets you get the best signal
out of the ADC by adjusting the gain so that it’s not clipping
(going beyond the ADC range). ADC clipping is flagged as an
error. Any errors cause the ADC and glitch LEDs to blink
together.

If you see these LEDs
blinking, check & clear the
error from Python.

9

FPGA

PLL

ADC

Gain Setting

Data

Clock

Analog
Input

Target Clock Reference

LNA

Synchronous Sampling

The ChipWhisperer-Husky also contains a unique feature not
found in oscilloscopes: the ability to sample synchronously to
the target device.

On the previous page, you might notice that a Phase Locked
Loop (PLL) drives both the ADC and the Target clock. Our
standard setup looks like this:

7.3728 MHz is a value that easily divides down to common
baud rates – the reason for such a funky number.

The same clock source is used to drive the target
microcontroller as is used to time the samples of the power
measurement. Here is an example comparing the exact same
operation recorded three times with synchronous and with
asynchronous sampling:

With synchronous sampling the samples of the power traces
are perfectly aligned. For more details on this see the paper:

C. O’Flynn, Z. Chen. A case study of Side-Channel Analysis using Decoupling
Capacitor Power Measurement with the OpenADC. 2013.

10

PLL

ADC

7.3728 MHz 29.4912 MHz

(7.3728 × 4)

Micro-
Controller

VCC
Rshunt

GND

CLK

ChipWhisperer-Husky Clocking

Clocking in the ChipWhisperer-Husky is very complex. This page
is a quick reference for what sources you can use and how they
connect.

11

Target
(External)

PLL
ADC

Sample
Storage

Trigger
Logic

LA/trace mem

Logic Analyzer
Trace Trigger
UART Trigger

S
a

m
p

li
n

g
 C

lo
c

k

U
S

B
 C

lo
c

k

Target Clock

Target Clock

HS1/Aux

HS1/Aux

USB Clock
Trace Clk

HS2/Aux

scope.glitch.clk_src

scope.LA.clk_src

scope.io.hs2

96 MHz

USB
Comms
 &
Control

O1

O2

Crystal

Measure

Glitch
Logic

Glitching (or Fault Injection)

The ChipWhisperer is also a tool for performing glitch (also called
fault injection) attacks. These attacks concentrate on the fact that
we can actually cause a microcontroller to perform incorrect
operations. This becomes a problem with lots of security-
conscious code, such as checking if a signature is valid:

We could “glitch” the device such that it incorrectly calls
boot_os(), by corrupting the value of sig_ok, or even skipping

an instruction. Take a look at the assembly code for the above:

The source code has an infinite loop at . The compiler optimizes
the code-flow, and now if the jump instruction is skipped in the
assembly version at  it will call that important function at 

that should never have been called. Oops!

This often works because flip-flops and other digital elements
have important timing constraints, such as a flip-flop
requiring that the data is present before the clock. If we can make
those constraints fail, incorrect data will be loaded (or processed).
And by “data” we can mean anything – like loading the wrong
instruction, loading the wrong argument, or loading the program
counter (PC) value!

 if(sig_ok){
 boot_os();
 } else {
 while(1);
 }

12

 ldr r3, .SYM_sig_ok
 ldr r3, [r3]
 cbnz r3, .L6

.L2:
 b .L2

.L6:
 bl boot_os()
 movs r0, #0







Even a simple microcontroller has a pipeline, which does
different operations on a given clock cycle in order to load,
process, and store the instructions that make up your
program. This makes it a sensitive area for glitches. You’ll
often find glitching directly impacts the program flow itself.

In the simple pipeline above, there would be sets of registers
that hold data moving between each stage. Each register is
made up of many flip-flops. In the following diagram, you can
see how the same clock drives two different flip-flops, with
the logic between them. Logic contains gates, such as AND,
OR, and XOR gates, used to build up functions that make the
microcontroller go.

Normally the data processes through the logic and arrives at
the input (D) before the clock pulse. Glitching tries to either
impact the propagation delay so that the data or clock arrives
at the wrong time, change the clock timing, or add extra
pulses such that the clock arrives before the data is ready.

13

Load Process Store

C
lo

ck
 C

y
cle

Clock Glitching with the Husky

Clock glitching tries to insert extra clock pulses into the clock
of the device. A typical clock looks nice and steady like on the
left, but with ChipWhisperer-Husky we can insert extra pulses
like on the right:

The ChipWhisperer-Husky uses an FPGA to do this, by phase-
shifting the “original” clock into multiple copies. This ensures
the glitch always scales with the frequency.

You can adjust the width & offset of the glitch within the pulse:

You can also glitch multiple cycles (repeat), and choose the
offset between the trigger and when the glitches start to flow
(ext_offset).

Because you might not have a fast enough logic analyzer to see
what is happening on the hardware, the ChipWhisperer-Husky
has a 300 MS/s logic analyzer built in.

The “glitchy clock” is sent over the 20-pin cable to the target’s
clock input for the labs.

Check out the following labs to see clock glitching in action:

Clock glitching is less common these days, as many devices run
on internal oscillators or don’t directly use the external clock.

14

You’ll explore the parameters in Fault101, Lab 1.1

You’ll attack actual code in Fault101, Labs 1.2 & 1.3

.ext_offset .width

.offset

Trigger event

Voltage Glitching with the Husky
Voltage glitching is trying to impact the internal power rails
of the target device. This can be done in many ways, such as
driving positive or negative voltage spikes onto the power
rails.

The ChipWhisperer-Husky uses a “crowbar” mechanism that
was pioneered in the ChipWhisperer hardware. It simply
uses a MOSFET (electronic switch) to short the power rails
of the target:

Because the targets for
ChipWhisperer have a resistive
shunt (Rs), you get very clean
power drops. External targets
may have more ringing, such as
the Raspberry Pi waveform
from the right.

You often need multiple glitches. You can try multiple narrow
glitches, but most of the time we instead use a long glitch
created with a mode called enable_only. Voltage glitching

can work on almost any target – see the link below for an
example of glitching a Raspberry Pi running Linux using
voltage glitching:

Check out the following labs to see voltage glitching in action:

15

You’ll explore the parameters in Fault101, Lab 2.1
You’ll attack actual code in Fault101, Labs 2.2 & 2.3
You’ll attack RSA in Fault201, Labs 2.1

https://www.youtube.com/watch?v=dVkCNiM0PL8

Target

Rs
VDD

Husky

GND

GNDCrowbar SMA

Installing ChipWhisperer

When working with ChipWhisperer, you will often be
interactively working with the target. This means rather than
just passively observing like with an oscilloscope, you’ll be
sending data, triggering, and toggling power, while observing
different outputs.

For this reason using ChipWhisperer is best done through
programming scripts. To make this easier we use something
called Jupyter, that interactively runs Python, shows plots,
and can call system commands (like compilers). Your view
will look like this:

The general connection looks like this:

The USB cable provides the connection to the
ChipWhisperer-Husky. Through this several interfaces are
exposed, including serial ports used for debugging and
interacting with the target.

Of course, you can use Python scripts directly without the
Jupyter interface. We use Jupyter to provide all our example
labs, but the actual interface and API is a standard Python
package.

16

Jupyter

Python
Kernel

USB

Computer

Installing on Windows

Installing on *nix

As you need many tools which are not typically installed on
Windows, we recommend using the latest ChipWhisperer
Windows Installer (available on the ChipWhisperer GitHub
under “releases”).

This will install Python, Jupyter, the ChipWhisperer
repository, and the typical compilers you will need to build the
samples. It also ensures you have the correct working version
of all these tools.

These tools all get installed in a single directory, so even if you
already have tools installed (such as make), the ChipWhisperer
ones will be isolated from existing tools on your system. The
driver should automatically load on plugging in the Husky.

On most Linux or Mac systems, the tools which you need to
run ChipWhisperer are available from the repositories. You
can easily install the required tools by following the latest
install instructions at the links below. You will need to provide
permission for USB access, as well.

17

Using Virtual Machine
A Virtual Machine (VM) which runs the Jupyter system is
available. This can be useful in training environments. See
links below for more information.

Installation Links
The latest links are available from ChipWhisperer.com or
the ChipWhisperer GIT Repository. Currently, the installation
instructions are part of the ChipWhisperer Software
Documentation:

 https://chipwhisperer.readthedocs.io/

Getting Started

We always recommend starting with our labs – they walk you
through how Power Analysis & Fault Injection work. For
example, the description of that password check is part of Lab
2-1B in SCA101:

The labs typically include a solution notebook. We’ve
purposely left some code out of the lab notebooks, but if you
get stuck you can always look at the solution notebook. You
can also run the solution notebook to see how things should
work!

You’ll need to modify the PLATFORM line for each lab and set it
to the target platform, CW308_SAM4S . This makes sure the

right compiler and settings are selected.

We suggest starting with the SCA101 course first, as it
includes some ChipWhisperer basics! Courses and labs are
generally designed to be stand-alone, however, so you can
jump around as things interest you.

18

Our first baseboard was the CW308 UFO board, so
many target platforms start with CW308_. With the
Husky we planned the new prefix of CW312_, but some

targets still use CW308 if they were originally designed
for the CW308 (even if they are in CW312 form factor).

Explanations of what you’ll do

You write Python code here!

Getting Started

Physically, you’ll connect the ChipWhisperer-Husky to the
CW313 board. Into the CW313 board you plug the target – we
suggest starting with the SAM4S target board, which is what
we use to validate the labs.

Before the ChipWhisperer-Husky, most ChipWhisperer
hardware used a STM32F3 target as a default. Due to
supply chain challenges the STM32F wasn’t available
when we were doing production of the Husky.

Your setup should look like this:

The default jumpers on the CW313 should be setup like this:

The SAM4S microcontroller is programmed using a serial
protocol, as it includes a hardware bootloader. Sometimes
you can trigger the “erase” by accident when removing and
inserting the board. If your target stops responding, try
reprograming it (one of the steps in each lab).

19

Ensure you use the 20-pin connector on the side, not the
one on the front of the ChipWhisperer-Husky.

You can use either of
these SMA connectors
on the CW313.

The Crowbar output
is connected only for
voltage glitching labs.

JP1
Shorted

JP2 Left
2 Pins

Shorted

JP4
Shorted

CW-Husky Hardware

The main pieces of the ChipWhisperer-Husky are an FPGA
(Artix A35/A100), Microcontroller (SAM3U), PLL clock
chip, ADC, and variable gain amplifier:

You can see most of them in this photo of the PCB itself:

20

FPGASAM3U

ADC

PLL

USB

Digital I/O

C
W

 2
0

-P
in

CW313 & Target Hardware
The CW313 board is a simple interposer to connect the
ChipWhisperer 20-pin connector to a target board:

The CW313 includes various useful headers to simplify this,
along with additional voltage regulators to generate 1.8V
and 1.2V (common core supply voltages). It also includes a
L-C filter which the target board can use to filter the power
supply.

The actual shunt resistor is located on the target board, and
normally some additional filtering will be present on the
target board itself. The two SMA connectors on the CW313
connect to the same point. There are two of them to allow
you to perform voltage glitching & power analysis at the
same time.

The specifics of which I/O pins are connected will vary with
target boards. Some have more I/O than others, and many
boards have different programming interfaces.

The CW313 does not perform level shifting. All NewAE targets
use a 3.3V I/O voltage level, even if the core voltage is lower.

21

Micro-
controller3.3V

1.8V

1.2V

L-C Filter

LDO

LDO
I/O Bus

Clock

Rshunt

2
0

-P
in

 C
W

SMA Shunt Low

Target Board

Connectivity – Analog & Glitching

The ChipWhisperer-Husky has three SMA connectors on the
front-end:

The “measure” connectors route to the differential variable
gain amplifier (VGA). They are AC-coupled in hardware –
you can change this to DC coupling with a solder mod, but
this has very limited DC range and needs additional signal
conditioning.

Most of the time we keep a shorting cap on the negative
input, and just use the positive input in a single-ended mode.
The single-end mode is more robust against setup errors, so
we use this when possible. Here is the setup difference
between single & differential:

The “crowbar” connector connects to two MOSFETs
(electronic switches) which can be used as a crowbar
for voltage glitching. The two MOSFETs have different
strengths. The “low-power” MOSFET has a quicker response
but is less powerful, and it works well with devices with a
built-in shunt resistor (such as any of our targets). The “high-
power” MOSFET is slower, but more powerful and can often
be used with real targets.

22

MeasureCrowbar

Microcontroller

VDD

Rs

GND
Single-Ended Differential

Glitch signal Crowbar SMA

Enables

Connectivity - Digital

The 20-pin Digital I/O connector can be used as a logic
analyzer input or as additional I/O for various modes. The
pinout is compatible with a 20-pin JTAG connector, and can
be used with “MPSSE mode” to provide OpenOCD support.

All I/O Lines are 3.3V Voltage Level

There are four main digital I/O ports you can use:

+5V & VREF are not internally connected on the Husky.

The 20-pin ChipWhisperer connector is used on most NewAE
products, and provides I/O to the target, along with clock &
power:

The two MCX connectors provide logic-level input or outputs
and must be configured in the software.

23

Pin Standard Usage

IO1 Serial RX or TX

IO2 Serial RX or TX

IO4 Trigger Input

HS2 Clock Output (to Target)

+3.3V Target Power

20-pin ChipWhisperer
Connector

Trigger/Glitch Out

Aux In/Out Port

Digital I/O Connector

Pin JTAG / SWD Mode

D7 TDI

D6 TMS / SWDIO

D5 TCK / SWCLK

D3 TDO

+3.3V Constant +3.3V Output

+3.3V on this connector is not switched with the target power.

Triggering

The ChipWhisperer-Husky uses triggering for both the power
analysis and fault injection. You’ll configure a trigger source,
and this can then have a configurable delay before both a
power analysis and fault injection event.

The simple rising edge trigger is used by default on all the
labs, where the target firmware is configured to generate a
trigger on an I/O pin. This I/O pin is typically connected to the
ChipWhisperer “GPIO4” pin on the 20-pin connector.

You can route other pins to the trigger logic, GPIO4 is just
what we usually use. You might use the nRST signal or a serial
line (GPIO1 or GPIO2) instead. This is configured with the
scope.trigger.triggers parameter.

You can combine the inputs using basic logic as well (see
docs). These inputs are fed to one of several trigger modules.

24

scope.trigger.triggers = "tio4" #Trigger on GPIO4
scope.trigger.triggers = "nrst" #Trigger on nRST pin
Use logical AND of AUX connector AND GPIO1:
scope.trigger.triggers = "aux AND tio1"

tio1
tio2
tio3
tio4
nrst
aux

userio_d0
…

userio_d7

Logic
Trigger
Module

Trigger Output

Rising edge trigger

Power measurement

Power glitch

scope.adc.offset

scope.glitch.ext_offset

Triggering

ChipWhisperer-Husky has several advanced trigger sources
beyond the standard edge events, these are:

Edge Count: This counts the total number of edges. This
can be helpful to trigger on events such as a certain
number of SPI transactions, or even arbitrary digital
protocols.

UART Trigger: Triggering on serial (UART) data ca be used
to trigger on either active communications with the
target, or passive output such as a boot message.

Analog ADC Level: Triggering on an ADC level is similar to
a standard oscilloscope trigger.

Analog Pattern Match (SAD): The SAD match triggers
on a waveform in real-time. This can be used to
match certain characteristic functions, for example.

You can add your own module into the FPGA code if you
need to trigger on new protocols. See the “modifying the
FPGA” section on page 32.

Arm ETM Trace (TraceWhisperer):
 The TraceWhisperer core can understand (decode)

the Arm ETM trace format. This allows you to trigger
on trace events, such as hitting a certain program
counter value.

25

Target Firmware & HAL

The ChipWhisperer repository includes a variety of example
applications. These applications typically run some form of
cryptographic code, often with additional instrumentation.
The applications are built with a Hardware Abstraction Layer
(HAL) which we’ve created and verified for many different
processors:

Many of the applications use the ‘SimpleSerial’ protocol.
This protocol started as a basic way of triggering
cryptographic functions on a target. It now includes a binary
mode (SimpleSerialV2) which allows very fast
communication.

We include the SimpleSerial (and SimpleSerialV2)

Python interface, so you can quickly build new applications
for working with arbitrary blocks inside the target.

To add a new device which you don’t find a HAL already at
chipwhisperer/hardware/victims/firmware/hal, you

only need to provide these functions:

26

simpleserial-aes

simpleserial-ecc

basic-passwdcheck STM32F4

ATSAM4S

K82F

Binary

void platform_init(void); // Setup clock etc
void init_uart(void); //Setup UART
void trigger_setup(void); // Setup trigger pin (I/O)
void trigger_low(void); // Set I/O pin low
void trigger_high(void); // Set I/O pin high
void putch(void); //Send single char, blocking
void getch(void); //Receive single char, blocking

You do not need working interrupts for the HAL to function.

Application HAL Output

Target Firmware & HAL

27

Some useful existing applications you can find in
chipwhisperer/firmware/mcu:

basic-passwdcheck: Shows a simple application that doesn’t use
SimpleSerial. This is closer to a real-life prompt.

simpleserial-aes: Runs AES on the target. You can choose
various cryptographic libraries, including using the
hardware accelerator where available.

simpleserial-rsa: Runs RSA on the target, this along with
simpleserial-ecc show how you can test asymmetric

algorithms.

simpleserial-trace: Shows how to enable the parallel trace,
which can be read or triggered on with the
TraceWhisperer functionality.

simpleserial-glitch: Runs various glitch demos. In particular
the glitch_loop() function is useful as a calibration when
testing new targets.

glitch-simple: A version of the glitch code without SimpleSerial.
If you enable the glitch loop (glitch_infinite()) you

get a simple output you can try to corrupt with a glitch.

 unsigned int k = 0;
 //Declared volatile to avoid optimizing away loop.
 //This also adds lots of SRAM access
 volatile uint16_t i, j, cnt;
 while(1){
 cnt = 0;
 trigger_high();
 trigger_low();
 for(i=0; i<200; i++){
 for(j=0; j<200; j++){cnt++;}
 }
 uart_printf("%u %u %u %u\n", cnt, i, j, k++);
 }

Adding a New Target

The following assumes you will build a new target for the
ChipWhisperer. Doing so will require:

1. Understanding the Clock
2. Understanding the Power Source
3. Finding a Trigger & IO
4. Calibration or Experimentation

Clock

We typically want to provide some relationship between the
ChipWhisperer clock & the target clock. Normally we’ll feed a
clock into the clock input pin, but on some devices they have
no clock input. You may be able to enable a clock output, or
even enable something like a very fast PWM signal that
ChipWhisperer can use to synchronize to the internal clock.

Power Source

You’ll want to add a shunt resistor on the power supply to the
core logic. Sometimes it’s not clear which power pin(s) this is,
so you may want to make the board with various jumpers.

The shunt value varies with device complexity; more complex
devices (such as large FPGAs) may need small shunt values.
We typically start with around 10 Ohms. Be sure to include
filtering (decoupling capacitors) on the high side of the
shunt:

The design files for all our individual target boards are
available & make a good reference for various filtering options.

28

CPU core power

Analog power
(Not connected to
shunt)

Adding a New Target

Trigger & IO

Building the sample code will require you to have a trigger,
which simply requires access to the GPIO pins and being able
to toggle them.

The default firmware also includes a working UART. The
ChipWhisperer-default 7.3728MHz frequency can be used to
generate standard baud rates from even very old UARTs.

ChipWhisperer can work with arbitrary baud rates and
clocks. A trick we sometimes use is simply to write code to
output fixed data from the UART, and measure that baud
rate. You can then use the “natural baud rate” of the device; it
doesn’t have to be a standard baud rate.

Calibration & Experimentation

With your new target, try performing some basic power
analysis. You should get traces which overlap and “appear”
low-noise. If not, try running an AES-128 attack, as you may
find the signal is still present even with the noise there. A
TVLA test (see SCA 203) is an even better technique.

For glitching, we normally start with running the glitch loop
test using voltage glitching. At first you have no idea how to
tune this. Start by making sure you can reset the device with
glitching (this is too far!), then back off until you see only
occasional resets. Hopefully, you’ll get some glitches in the
calibration code at that point.

See Fault 101 Lab 2.1 for this sort of calibration.

29

Example trace from a
STM32F2 that is a little
noisier than other
examples.

Connecting an Existing Board

If you have an existing board (be it development board or a
real target), the steps are similar to those in “adding a new
target”. The difference is that we have additional constraints
about what we can do. We almost always build a custom
target board for a new chip we are working with before
attempting to modify an existing board, as there are many
“unknown unknowns” when working with a new board
and chip together.

Clock

We typically want to provide some relationship between the
ChipWhisperer clock and the target clock. This requires us to
control the clock. If your device has a crystal already, note
that this typically means you can simply “overpower” it or
force it to phase-lock to your own clock:

The resistor and capacitor may or may not be required. Note
you need to feed this into the input pin, which often won’t be
specified (even in the datasheet). In which case you can
experiment to determine this.

Power

For power analysis, it’s much easier to have a very clean
power source. You may want to feed an external supply in,
and adding filtering on the physical board is very helpful.

See the “Hardware Hacking Handbook”, Chapter 11 for more
discussion of this type of setup.

30

Microcontroller

CLK

Existing crystal.
May need to remove.

Connecting an Existing Board

Finding a Trigger

You’ll need to trigger on the device’s operations. Some common
triggers you might consider include:

• Triggering on the reset pin going high
• Check if the device has a reset out, which can be an even

more accurate source of reset.
• Devices may have internal delays from reset pin to boot

processing.
• Triggering on UART data

• Triggering on something the device sends to you is best, as
it is more likely to be synchronized to internal logic.

• Triggering on some external I/O (such as an activity LED)

The analog trigger module (SAD) can be helpful as well.

Attempting to directly “attack” some specific function is rarely
successful. Instead, first decide on some simple functionality you
can use to confirm that your power analysis or fault injection is
working.

For example, if you’re working with a board and you want to
confirm your glitch attack will be successful, check the following:

• Can you corrupt a start-up prompt without it rebooting?
• Can you corrupt a checksum or CRC operation? They are

typically slow (easy to “hit”) and have useful error messages.

For power analysis, you might consider:

• Can I observe the device boot and see various operations?
• Can I force the device into different states (secure and

insecure) and see where in time that switch happened?

Calibration & Exploration

31

ADV: Modifying the FPGA

The ChipWhisperer-Husky-FPGA repository contains the
FPGA code. There is a simulation and test regression
environment to validate correct functionality of the existing
design. Implementation is done with Vivado.

Once you have an updated FPGA bitfile, further automated
testing can be done with the test_husky.py script; this runs

tests on the actual hardware for things that are harder to
verify in simulation.

The stock FPGA bitfile is very full so if you wish to make
substantial changes you may need to disable some features.

If you need more BRAMs (which are almost fully utilized),
you can define TINYFIFO to drastically reduce the ADC
sample storage size.

The Field Programmable Gate Array (FPGA) provides all the
high-speed data processing for the ChipWhisperer-Husky.

32

https://github.com/newaetech/chipwhisperer-husky-fpga

S
A

M
3

U A/D Bus

I/O Pins

Target

Pin Mux Clocking

Control
Logic

Trig
Logic

FIFO

ADC
Logic

33

ADV: Modifying the SAM3U

In addition to the FPGA, the Husky has a SAM3U
microcontroller. Its main purpose is to handle USB
communication, program and communicate with the
FPGA, implement target programming, and provide
UART communication with target boards.

The SAM3U firmware is available from the
ChipWhisperer-Husky repository. The same compilers
are required as used for ChipWhisperer targets, so you
should already have the toolchain setup.

To build firmware, navigate to chipwhisperer-
husky/ChipWhisperer-Husky/src, make sure you've
got the naeusb submodule up to date, and run:

 $ make –j

We use the naeusb repository to hold common build
systems. To get familiar with the layout of the repo and
the build system, check out naeusb/README.md
naeusb/naeusb.md

You can reprogram the SAM3U using the built-in
bootloader system:

import chipwhisperer as cw
cw.program_sam_firmware(fw_path='SAM3U.bin')

USB AVR Programming

XMEGA Programming

CDC Interface USART

MPSSE Interface

NewAE Interface

I/O

Address/
Data Bus

SPI

FPGA

34

Updating SAM3U Firmware

You might get a message about a firmware update for
the ChipWhisperer-Husky when you connect. You’ll
see something like this:

See the online documentation for the procedure. If the
firmware update stalls or fails, the device will often
revert to the hardware bootloader. You can tell this has
happened since the device appears as a serial port:

In very rare cases you need to force the bootloader to
re-enter. Depending on your hardware revision, you
either need to short a pad on the PCB, or you can use a
pin to press a recessed button. See the online
documentation for this.

Note the hardware bootloader in the SAM3U cannot be
erased. There is no risk of a failed firmware update
permanently bricking your ChipWhisperer-Husky.

There is no firmware update needed for the FPGA, as
the FPGA is always loaded when the ChipWhisperer
software connects. The FPGA bitstream is always the
most up-to-date.

35

Common Problems

Problem: Device stops being detected in Jupyter

First, try unplugging & replugging it. This performs two ‘fixes’:
(1) ensures all connections on the computer are closed, and (2)
does a hard reset of the microcontroller. When switching
Jupyter notebooks, run scope.dis() in the “old” one to close the
connection and to avoid (1).

If that isn’t successful, check that the driver has loaded
(Windows) or permissions are OK.

Problem: No device in Device Manager or dmesg

Check that the status LED is blinking (indicating USB is OK). If
light is solid, try plugging into another computer. If this
works, try a different port on your computer, or try removing
other attached USB devices that could be conflicting. See online
documentation for more USB troubleshooting.

Problem: Device LEDs are rapidly blinking on & off

This is typically a power or sleep problem; the computer is
attempting to power it up and then shutting it down right away.
Try a different port, or if you’re using a USB hub try directly
connecting to your USB port.

Problem: Device is dead after a firmware update

See online documentation and page to the left. You may need to
manually trigger the bootloader, which is always present in the
device.

Problem: SAM4S Target Not Responding

The SAM4S seems to sometimes need a power cycle (but
sometimes works better without it?). Try modifying the reset
code to toggle scope.io.target_pwr (or remove it if already

there).

Getting Help & More
Learning About Security

You might have more fundamental questions about this whole thing!
Beyond the ChipWhisperer-Jupyter courses which are freely available,
other resources include:

• The Hardware Hacking Handbook by Jasper van
Woudenberg & Colin O’Flynn, published by No Starch Press.

• ChipWhisperer Training (ChipWhisperer.io & in-person)
• General Books & Material on embedded development will be

helpful in understanding how lots of things work! Much of what we
do in security is really related to embedded engineering.

NewAE Specific Assistance

ChipWhisperer Documentation includes documentation for
various hardware and target boards, including the
CWHusky, CW313, and the included targets. It
includes lots of getting started advice, along with how to

 use the software, and the full API documentation
 that is also available through the Python help() feature.

 https://chipwhisperer.readthedocs.io

NewAE Forum is our preferred support method. Answers here can
be seen by the wider community.

 https://forum.newae.com

Issues on GitHub projects are used for specific problems
(bugs); raise an issue to ensure they aren’t dropped. Please
don’t use issues for general questions.

NewAE Discord is a chat room which also has some support offered.
For specific questions, the Forum is typically easier, as we can
provide inline images and access the thread at a later date.

NewAE Support Tickets are used when you have hardware
problems or similar. If you need a hardware replacement, you
will need to use our support ticket system.

 https://support.newae.com

36

Links to Sources & Repos

ChipWhisperer Repositories

You might notice some of the resources are a bit spread out! Here
are some of the more important resources you don’t want to miss:

ChipWhisperer Repository
 This (overloaded) codebase includes many of our older

design files including hardware sources, FPGA examples
for the CW305, the target firmware and HAL, and then the
entire ChipWhisperer software stack.

https://github.com/newaetech/chipwhisperer

ChipWhisperer-Jupyter Repository
 This repository includes the “Jupyter notebooks” organized

into complete courses. This gets installed when you install
ChipWhisperer by default.

 https://github.com/newaetech/chipwhisperer-jupyter

ChipWhisperer-Husky Repository
 This repository includes the SAM3U firmware and other

hardware information. The FPGA design is a submodule of
this repository.

https://github.com/newaetech/chipwhisperer-husky

ChipWhisperer CW308/CW312 Target Repository
 This repository includes the source files for all target

boards for the CW308 and CW313. This is a useful
reference if designing your own targets.

https://github.com/newaetech/chipwhisperer-target-cw308t

ChipWhisperer TraceWhisperer Repository
 TraceWhisperer is our trace decode logic, used for both

debug and triggering capability.

https://github.com/newaetech/tracewhisperer

37

38

The “+3.3V” is switched on/off with scope.io.target_pwr

The I/O pins will go High-Z when target power is switched off
to prevent powering the target.

Pin Standard Usage

IO1 Serial RX or TX

IO2 Serial RX or TX

IO4 Trigger Input

HS2 Clock Output (to Target)

+3.3V Target Power

Pin JTAG / SWD Mode

D7 TDI

D6 TMS / SWDIO

D5 TCK / SWCLK

D3 TDO

+3.3V Constant +3.3V Output

+3.3V on this connector is not switched with the target power.

See page 23 for connector details.

20-Pin ChipWhisperer Connector (Side)

20-Pin Digital I/O Connector (Front)

Quick Reference for Connectors

Using JTAG (MPSSE) Mode

ChipWhisperer can operate as a FTDI-compatible debug probe
for usage with OpenOCD (we call it ‘MPSSE mode’). You
enable this via Python, and can choose to use either the
ChipWhisperer connector pins OR the Digital I/O pins with
this mode.

USB limitations mean that USB-Serial mode & MPSSE mode
cannot be used together. On Windows only a single process
can talk to the USB device, meaning you need to disconnect
in Python when using OpenOCD (& vis-versa) on Windows.

39

LIMITED WARRANTY AND LIMITATION OF LIABILITY
Each NewAE Technology Inc product is warranted to be free from defects in material
and workmanship under normal use and service. The warranty period is one year and
begins on the date of shipment. This warranty extends only to the original buyer or end-
user customer of a NewAE Technology Inc authorized reseller, and does not apply to
probes, exposed circuit boards, fault injection targets, or to any product which, in
NewAE Technology Inc's opinion, has been misused, altered, neglected, contaminated,
or damaged by accident or abnormal conditions of operation or handling (including
failing to observe required ESD handling procedures).

Authorized resellers shall extend this warranty on new and unused products to end-user
customers only but have no authority to extend a greater or different warranty on behalf
of NewAE Technology Inc. NewAE Technology Inc.'s warranty obligation is limited, at
NewAE Technology Inc.'s option, to refund of the purchase price, free of charge repair,
or replacement of a defective product which is returned to a NewAE Technology Inc.
within the warranty period. To obtain warranty service, contact NewAE Technology Inc.

If NewAE Technology Inc. determines that failure was caused by neglect, mis-use,
contamination, alteration, accident, or abnormal condition of operation or handling,
including failures caused by use outside the product’s specified rating, or normal wear
and tear of mechanical components, NewAE Technology Inc will provide an estimate of
repair costs and obtain authorization before commencing the work.

THIS WARRANTY IS BUYER'S SOLE AND EXCLUSIVE REMEDY AND IS IN LIEU
OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. NEWAE TECHNOLOGY INC SHALL NOT BE
LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL
DAMAGES OR LOSSES, INCLUDING LOSS OF DATA, ARISING FROM ANY CAUSE
OR THEORY.

Since some countries or states do not allow limitation of the term of an im-plied
warranty, or exclusion or limitation of incidental or consequential damages, the
limitations and exclusions of this warranty may not apply to every buyer. If any
provision of this Warranty is held invalid or unenforceable by a court or other decision-
maker of competent jurisdiction, such holding will not affect the validity or
enforceability of any other provision.

NewAE Technology Inc.
127 Joseph Zatzman Dr
Dartmouth, NS. Canada

sales@newae.com
1-888-GLITCHY (US/CA)
 or
+1 902 800 8880

40

Bergen is The Assistant (to the) QA Manager at
NewAE Technology Inc. At NewAE, she has led
the work-life balance program by example. She is
originally from the Canadian territory of Nunavut,
and always dreamed of competing in dogsled
races. She can be seen practicing her dogsled-pull
many times throughout her daily walks and has
never let her short stature get in the way of her
training regime. She lives in Halifax, NS, Canada.

NewAE Technology Inc.
Self-Publishing Division.
127 Joseph Zatzman Dr.
Dartmouth, NS. B3B 1W1.
Canada
Phone: 1-888-GLITCHY

$19.99 CAD / £14.99 GBP / $99.99 USD

ISBN: 978-1-9994176-1-1

About the Author

ChipWhisperer Husky User Manual®

What’s this? A manual on how to use side-channel
analysis to understand what your husky is talking about?
Whoa that would be awesome – what a great idea!

Unfortunately, this is just a book about a hardware tool,
the ChipWhisperer-Husky. We see where the confusion
comes from.

We’ll get started on that first one though; that is probably
going to be a big seller!

In the meantime, you can hopefully use this book to
understand what the heck power analysis and fault
injection is, and how you can start learning about them
using a low-cost† tool.

† Relative to the cost of everything else in 2024.

Printed in Nova Scotia, Canada.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

